首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The connection between adult preferences and offspring performance is a long‐standing issue in understanding the evolutionary and ecological forces that dictate host associations and specialization in herbivorous insects. Indeed, decisions made by females about where to lay their eggs have direct consequences for fitness and are influenced by interacting factors including offspring performance, defence and competition. Nonetheless, in addition to these attributes of the offspring, a female's choices may be affected by her own prior experience. Here we examined oviposition preference, larval performance and the role of learning in the monarch butterfly, Danaus plexippus, which encounters diverse milkweed host species across its broad range and over the course of migration. Monarch females consistently preferred to oviposit on Asclepias incarnata subspecies pulchra. This plant, however, was associated with poor caterpillar growth, low sequestration of toxins and the highest plant defences (latex and trichomes). We examined flexibility in this apparently maladaptive preference by testing the impact of previous experience and competition on preference. Experience laying on an alternative plant species enhanced preference for that species in contrast to A. i. pulchra. In addition, presence of a (competing) conspecific caterpillar on A. i. pulchra had a strongly deterrent effect and reversed host plant preferences. Thus, monarch butterflies exhibit preferences contrary to what would be expected based on offspring development and sequestered defences, but their preferences are altered by learning and competition, which may allow butterflies to shift preferences as they encounter diverse milkweeds across the landscape. Learning and perception of threats (i.e. competition or predation) may be critical for most herbivorous insects, which universally experience heterogeneity among their potential host plants.  相似文献   

2.
Monarch butterflies, Danaus plexippus L. (Lepidoptera: Nymphalidae), occur world‐wide and are specialist herbivores of plants in the milkweed family (Asclepiadaceae). In North America, two monarch populations breed east and west of the continental divide in areas populated by different host plant species. To examine the population variation in monarch responses to different Asclepias species, we measured oviposition preference and larval performance among captive progeny reared from adult butterflies collected in eastern and western North America. Host plant use was evaluated using two milkweed species widely distributed in eastern North America (A. incarnata and A. syriaca), and two species common to western North America (A. fascicularis and A. speciosa). We predicted that exposure to different host plant species in their respective breeding ranges could select for divergent host use traits, so that monarchs should preferentially lay more eggs on, and larvae should perform better on, milkweed species common to their native habitats. Results showed that across all adult female butterflies, oviposition preferences were highest for A. incarnata and lowest for A. fascicularis, but mean preferences did not differ significantly between eastern and western monarch populations. Larvae from both populations experienced the highest survival and growth rates on A. incarnata and A. fascicularis, and we again found no significant interactions between monarch source population and milkweed species. Moreover, the average rank order of larval performance did not correspond directly to mean female oviposition preferences, suggesting that additional factors beyond larval performance influence monarch oviposition behavior. Finally, significant family level variation was observed for both preference and performance responses within populations, suggesting an underlying genetic variation or maternal effects governing these traits.  相似文献   

3.
Trophic cascades occur when predators benefit plants by consuming herbivores, but the overall strength of a trophic cascade depends upon the way species interactions propagate through a system. For example, plant resistance to, or tolerance of, herbivores reduces the potential magnitude of a trophic cascade. At the same time, plants can also affect predator foraging or consumption in ways that either increase or decrease the strength of trophic cascades. In this study, we investigated the effects of plant variation on cascade strength by manipulating predator access to aphid populations on two species of milkweed: the slower-growing, putatively more-defended Asclepias syriaca and the faster-growing, putatively less-defended Asclepias incarnata. Predatory insects increased plant growth and survival for both species, but the strength of these trophic cascades was greater on A. incarnata, which supported more aphid growth early in the season than did A. syriaca. More predators were observed per aphid on A. incarnata, and cage treatments generated significant patterns consistent with predator aggregation on A. incarnata, but not A. syriaca. Although predators strongly affected aphids, this effect did not differ consistently between milkweed species. Plant tolerance to herbivory may therefore be the primary driver of the difference in trophic cascade strength observed. Importantly, we observed that the timing of predator exclusion affected plant growth and survival differently, indicating that measures of “cascade strength” may change with phenology and plant physiological responses. Together, our results suggest a mechanism by which differences in resource allocation patterns could explain differences in growth, phenology, and cascade strength between species.  相似文献   

4.
1. An herbivore's life-history strategy, including optimization of resource use, is constrained by its evolutionary history and ecological factors varying across the landscape. 2. We asked if related and co-distributed herbivore species maintain consistency of host preference and oviposition behaviours along the species' range. We surveyed two putative species of milkweed stem weevils, Rhyssomatus lineaticollis and R. annectens, which co-occur alongside their hosts, Asclepias syriaca and A. incarnata. 3. We confirmed the two species status of weevils, supported by differences in morphology and a bilocus gene phylogeny. Furthermore, we found that species divergence recapitulated the weevils current host plant use. 4. We found oviposition variation within and between species. R. annectens poked the stem haphazardly or girdled it before oviposition. Meanwhile, R. lineaticollis primarily trenched stems in the north, but poked or girdled in the south. Variation in oviposition patterns could be a response to variation in host plant defenses. 5. In nature, weevils strictly oviposited on their respective host plants, while in bioassays, R. lineaticollis exhibited strong preference for A. syriaca and R. annectens fed equally on both host plants. 6. Overall, our results support that milkweed stem weevils are strict specialists but might be undergoing changes in host use. R. lineaticollis specializes on A. syriaca but has two distinct modes of oviposition. Meanwhile R. annectens seems to be more accepting of other hosts. We hypothesize that these weevils might be shifting host use associated with changes in host plant distributions.  相似文献   

5.
1. Natal habitat preference induction (NHPI) is a behavioural phenomenon in which offspring show a change in preference in adult oviposition choice as a function of experience as an immature. 2. Although well known in certain systems, such as herbivorous insects, this behaviour has not been well studied in aquatic insects. 3. The container–breeding mosquito, Aedes albopictus (Skuse) was used to test if NHPI occurs in aquatic insects under natural conditions of two leaf species as a nutritive base (Juniperus virginiana L. and Quercus virginiana Mill) and two larval densities. 4. Significant effects of leaf species and density on adult mosquito attributes were found, with J. virginiana and low larval density associated with more, faster developing, larger and more fecund mosquitoes. However, no evidence for NHPI was found. Instead a canalised behavior was found that included spreading eggs between high– and low–quality oviposition choices in the same proportions regardless of larval experience.  相似文献   

6.
Oviposition preferences of herbivorous insects affect offspring performance. Both positive and negative links between oviposition preference and offspring performance have been reported for many species. A gall‐inducing leafhopper, Cicadulina bipunctata Melichar (Hemiptera: Cicadellidae), feeds on various Poaceae plants and induces galls of enhanced nutritional value for their offspring. Although gall induction by C. bipunctata improves nymphal performance, the oviposition preference of females between galled and non‐galled host plants is still unclear. In this paper, the nymphal performance and oviposition and feeding‐site preference of C. bipunctata were investigated using galled wheat, Triticum aestivum L., and non‐galled barley, Hordeum vulgare L., as host plants. The survival rate of C. bipunctata on wheat was significantly higher than on barley. In the choice test, significantly more eggs were laid into barley, whereas the number of eggs deposited on both hosts was not significantly different in the no‐choice test. The number of settling individuals per leaf area was not significantly different between wheat and barley, suggesting no clear preference for oviposition between these plants. Experience as a nymph with a growing host did not affect oviposition preference as adult female. The inconsistent correspondence between offspring performance and oviposition preference of C. bipunctata may reflect the high mobility of nymphs and/or differences in leaf area between host plants. The results indicate that the previous finding that oviposition preference and offspring performance are not always positively correlated in herbivorous insects is applicable to gall‐inducing insects.  相似文献   

7.
We investigated the relationship between oviposition preference and offspring performance in a herbivorous lady beetle Epilachna pustulosa on two co-occurring plant species, thistle Cirsium kamtschaticum and blue cohosh Caulophyllum robustum, in 1994 and 1995. The relative importance of bottom-up effects by host plants and top-down effects by natural enemies on offspring performance were determined using field and laboratory experiments. In both years, egg density on blue cohosh was significantly higher than on thistle. A laboratory experiment demonstrated that larval survival from hatching to adult emergence was significantly higher, and developmental period shorter when larvae were reared on blue cohosh compared to thistle. The positive preference-performance linkage varied between years in the field. Top-down effects had a different impact on larval survival on the two host plant species. Arthropod predators, a lady beetle Harmonia axyridis and an earwig Forficula mikado, considerably depressed immature survival on thistle, while they were negligible on blue cohosh. Although the lack of effective predation increased larval survival on blue cohosh, it led to defoliation due to increased larval feeding late in the season. Because of severe intraspecific competition, old larvae had significantly lower survival on blue cohosh than on thistle. In 1994, as larval survival decreased due to defoliation on blue cohosh, the overall survival rate was significantly higher on thistle than on blue cohosh. This survival pattern was opposite to that found in the laboratory experiment. In contrast, in 1995, the increase in predatory lady beetles on thistle caused greater larval mortality. Thus, the overall survival was significantly lower on thistle than on blue cohosh, although severe intraspecific competition occurred on blue cohosh as it had in 1994. Consequently, the offspring performance on the two host plants is largely determined by the relative importance of arthropod predation determining larval survival on thistle and host plant defoliation reducing late larval survival on blue cohosh. These results indicate the important role of spatial and temporal variability of natural enemies on the preference-performance linkage of herbivorous insects. Received: 19 August 1998 / Accepted: 11 January 1999  相似文献   

8.
It is expected that females preferentially oviposit on plant hosts that allow for optimal larval performance. However, this expectation contradicts empirical evidence where adults do not always choose the best host for their descendants. Recent evidence suggests that females’ host selection depends on the number of potential hosts. Females from oligophagous species seem to be able to choose an appropriate host in terms of larval performance, whereas in polyphagous species, adult oviposition preference is not related with larval performance. This suggests that larvae in polyphagous species could be taking a more active role in host selection than their mothers. Here, we evaluated the oviposition preference and the larval preference and performance of two polyphagous species of economic importance, Copitarsia decolora (Guenée) (Lepidoptera: Noctuidae: Cuculliinae) and Peridroma saucia (Hübner) (Lepidoptera: Noctuidae: Noctuinae), on eight species of cultivated plants. In laboratory and greenhouse choice assays, we tested adult preference for oviposition and larval preference at 1 and 24 h. Larval performance was measured in terms of survival to adulthood, length of larval period, and pupal weight. We found that both adult females and larvae actively choose their hosts and that the larval preference toward the hosts is related to the females’ preference in both herbivore species. However, the females and larvae did not preferentially select the host with the best larval performance, indicating that larval performance is not related to female or larval preference and that other selective pressures are influencing the choice of the host plant in these two species.  相似文献   

9.
A series of experimental pollinations involving three sympatric species provided strong evidence for physiological and/or genetic barriers to hybridization in Asclepias. Pollen tubes were observed to penetrate the style in some interspecific crosses of all species pairs. Aniline blue fluorescence microscopy also demonstrated pollen tube penetration of foreign ovules following pollinations between A. incarnata and A. verticillata. However, none of the 279 total pollinations attempted between species yielded mature seed, indicating the presence of late pre-fertilization or early post-fertilization incompatibility. Intraspecific pollinations in greenhouse and field populations revealed greater crossability between populations than within populations of a single species. Self-pollinations of A. verticillata were unsuccessful, while 29% and 4% of those of A. incarnata and A. syriaca, respectively, yielded mature follicles. It is suggested that the potential for autogamy, combined with floral mechanisms requiring pollination by insects, insure the advantages of both the genetic variability promoted by outcrossing and the reproductive assurance of uniparental reproduction. Strong reproductive barriers between species reduce the change of intergradation where species occur sympatrically.  相似文献   

10.
Liu Z  Scheirs J  Heckel DG 《Oecologia》2012,168(2):459-469
Much attention has been paid to the question of the relative importance of female behaviour versus larval feeding capacities in determining the host range of herbivorous insects. Host-use trade-offs displayed by generalist and specialist sister species of the genus Helicoverpa were evaluated to examine the relationship between maternal choice and offspring performance. The prediction of optimal oviposition theory, that females will choose to lay eggs on plants on which their offspring perform best as larvae, was tested by measuring oviposition preference and larval performance of Helicoverpa armigera and H. assulta on tobacco, sunflower, and hot pepper. These two measures were more highly correlated in the specialist H. assulta. Both species exhibited the same oviposition preference ranking: tobacco > sunflower > hot pepper. H. armigera larvae preferred sunflower, followed by tobacco and hot pepper; while H. assulta larvae preferred tobacco to sunflower and hot pepper, consistent with their mothers’ oviposition preference. Duration of the total period from egg to adult emergence for each species was significantly shorter on the host plant preferred by the larvae. H. assulta had shorter larval duration and higher relative growth rate than H. armigera on tobacco and hot pepper, and vice versa for sunflower, indicating species differences in host utilization. Thus, while only the specialist H. assulta displayed the predicted optimal oviposition pattern, females of both species show the least preference for the plant on which their offspring perform worst. Selection for optimal oviposition may be stronger on the specialist, which has fewer choices and lower lifetime fecundity than the generalist.  相似文献   

11.
Prudic KL  Oliver JC  Bowers MD 《Oecologia》2005,143(4):578-587
This study examined the effects of increased leaf nitrogen in natural host-plants (Plantago spp.) on female oviposition preference, larval performance, and larval chemical defense of the butterfly Junonia coenia. Increased availability of soil nutrients caused the host-plant’s foliar nitrogen to increase and its chemical defense to decrease. Larval performance did not correlate with increases in foliar nitrogen. Larval growth rate and survival were equivalent across host-plant treatments. However, larvae raised on fertilized host-plants showed concomitant decreases in chemical defense as compared to larvae reared on unfertilized host-plants. Since most butterfly larvae cannot move long distances during their first few instars and are forced to feed upon the plant on which they hatched, J. coenia larval chemical defense is determined, in large part, by female oviposition choice. Female butterflies preferred host-plants with high nitrogen over host-plants with low nitrogen; however, this preference was also mediated by plant chemical defense. Female butterflies preferred more chemically defended host-plants when foliar nitrogen was equivalent between host-plants. J. coenia larvae experience intense predation in the field, especially when larvae are not chemically well defended. Any qualitative or quantitative variation in plant allelochemical defense has fitness consequences on these larvae. Thus, these results indicate that females may be making sub-optimal oviposition decisions under a nutrient-enriched regime, when predators are present. Given the recent increase in fertilizer application and nitrogen deposition on the terrestrial landscape, these interactions between female preference, larval performance, and larval chemical defense may result in long-term changes in population dynamics and persistence of specialist insects.  相似文献   

12.
Many insects face the challenge to select oviposition sites in heterogeneous environments where biotic and abiotic factors can change over time. One way to deal with this complexity is to use sensory experiences made during developmental stages to locate similar habitats or hosts in which larval development can be maximized. While various studies have investigated oviposition preference and larval performance relationships in insects, they have largely overlooked that sensory experiences made during the larval stage can affect such relationships. We addressed this issue by determining the role of natal experience on oviposition preference and larval performance relationships in a tritrophic system consisting of Galerucella sagittariae, feeding on the two host plants Potentilla palustris and Lysimachia thyrsiflora, and its larval parasitoid Asecodes lucens. We firstly determined whether differences in host‐derived olfactory information could lead to divergent host selection, and secondly, whether host preference could result in higher larval performance based on the natal origin of the insects. Our results showed that the natal origin and the quality of the current host are both important aspects in oviposition preference and larval performance relationships. While we found a positive relationship between preference and performance for natal Lysimachia beetles, natal Potentilla larvae showed no such relationship and developed better on L. thyrsiflora. Additionally, the host selection by the parasitoid was mainly affected by the natal origin, while its performance was higher on Lysimachia larvae. With this study, we showed that the relationship between oviposition preference and larval performance depends on the interplay between the natal origin of the female and the quality of the current host. However, without incorporating the full tritrophic context of these interactions, their implication in insect fitness and potential adaptation cannot be fully understood.  相似文献   

13.
Plant volatiles are signals used by herbivorous insects to locate host plants and select oviposition sites. Whether such volatiles are used as indicators of plant quality by adult insects in search of host plants has been rarely tested. We tested whether volatiles indicate plant quality by studying the oviposition of the grapevine moth Lobesia botrana on the grapevine plant Vitis vinifera. Host plants were infected with a variety of microorganisms, and larval fitness was correlated to the infected state of the substrate. Our results show an oviposition preference for volatiles that is significantly correlated with the fitness of the substrate. The chemical profiles of the bouquets from each V. vinifera–microorganism system are clearly differentiated in a PCA analysis. Both the volatile signal and the quality of the plant as larval food were affected by the introduction of microorganisms. Our study represents a broad approach to the study of plant–insect interactions by considering not only the direct effect of the plant but also the effect of plant–microorganism interactions on insect population dynamics.  相似文献   

14.
Variation in plant communities is likely to modulate the feeding and oviposition behavior of herbivorous insects, and plant‐associated microbes are largely ignored in this context. Here, we take into account that insects feeding on grasses commonly encounter systemic and vertically transmitted (via seeds) fungal Epichloë endophytes, which are regarded as defensive grass mutualists. Defensive mutualism is primarily attributable to alkaloids of fungal origin. To study the effects of Epichloë on insect behavior and performance, we selected wild tall fescue (Festuca arundinacea) and red fescue (Festuca rubra) as grass–endophyte models. The plants used either harbored the systemic endophyte (E+) or were endophyte‐free (E?). As a model herbivore, we selected the Coenonympha hero butterfly feeding on grasses as larvae. We examined both oviposition and feeding preferences of the herbivore as well as larval performance in relation to the presence of Epichloë endophytes in the plants. Our findings did not clearly support the female's oviposition preference to reflect the performance of her offspring. First, the preference responses depended greatly on the grass–endophyte symbiotum. In F. arundinacea, C. hero females preferred E+ individuals in oviposition‐choice tests, whereas in F. rubra, the endophytes may decrease exploitation, as both C. hero adults and larvae preferred E? grasses. Second, the endophytes had no effect on larval performance. Overall, F. arundinacea was an inferior host for C. hero larvae. However, the attraction of C. hero females to E+ may not be maladaptive if these plants constitute a favorable oviposition substrate for reasons other than the plants' nutritional quality. For example, rougher surface of E+ plant may physically facilitate the attachment of eggs, or the plants offer greater protection from natural enemies. Our results highlight the importance of considering the preference of herbivorous insects in studies involving the endophyte‐symbiotic grasses as host plants.  相似文献   

15.
The potential of two invasive herbaceous vines Vincetoxicum nigrum (L.) Moench and Vincetoxicum rossicum (Kleopow) Barbar. (Asclepiadaceae) to reduce monarch butterfly (Danaus plexippus L.) (Lepidoptera: Nymphalidae, Danainae) populations was investigated by evaluating oviposition selection in adult monarch butterflies and larval feeding preference in choice tests comparing the native host plant of monarch butterflies, Asclepias syriaca L. (Asclepiadaceae) and the two non‐indigenous Vincetoxicum species. In both choice and no‐choice tests, no eggs were oviposited on either of the two Vincetoxicum species whereas over 66 eggs per female were oviposited on A. syriaca plants. All first instar larvae allowed to feed on A. syriaca for 48 h survived while a significantly lower proportion survived on V. rossicum (44%) and V. nigrum (14%). Mean weight of larvae that did survive on the Vincetoxicum species was significantly lower than the mean weight of larvae that fed on A. syriaca. The mean weight of surviving larvae, however, did not differ between the two Vincetoxicum species. The mean proportion of leaves consumed by larvae feeding on A. syriaca was significantly greater than the mean proportion of leaves consumed by larvae feeding on either Vincetoxicum species. Findings from this research indicate that V. rossicum and V. nigrum are not viable hosts of monarch butterflies and are likely to pose little direct threat to their populations as oviposition sinks. The ability of these highly aggressive plants, however, to out‐compete and displace the native host of monarchs, A. syriaca, may pose a more serious threat. The potential of monarch populations to adapt to the two Vincetoxicum species as host plants over the long‐term is discussed.  相似文献   

16.
If sufficient seedling establishment can be achieved, seed-based restoration provides an affordable, active restoration approach that can be implemented quickly at scale. However, establishment has served as a major restoration bottleneck, highlighting the need for improved understanding of seed germination niche and interactions with site conditions. Germination niche breadth (NB) is expected to increase with gene flow, resulting in broader environmental tolerance range, reduced sensitivity to site conditions, and less variation among seed sources. To investigate how germination NB relates to inter- and intraspecific variation in establishment from seed, we compared field recruitment for two milkweeds (Asclepias), the larval host plant of the monarch butterfly and thus a high priority group for habitat creation. Consistent with species-level NB derived from laboratory trials, there was strong evidence that early life stages of the habitat specialist (Asclepias incarnata) varied among seed collection regions (separated by 423–572 km) but no evidence that the generalist (A. syriaca) varied among seed sources collected across an approximately 750-km transect. Regeneration trends demonstrate that A. incarnata is significantly more sensitive to seed source and therefore requires more restricted seed zones. However, climate change may necessitate that we separate seed collection zones from seed application zones, upending the traditional framework of seed transfer zones. Until taxon-specific studies have identified the scale of adaptive, phenotypic variance, restoration practitioners should continue to adjust the scale of seed collection zones for milkweeds and other taxa based on species traits known to influence gene flow, such as abundance and habitat specificity.  相似文献   

17.
The preference–performance hypothesis predicts that female insects maximize their fitness by utilizing host plants which are associated with high larval performance. Still, studies with several insect species have failed to find a positive correlation between oviposition preference and larval performance. In the present study, we experimentally investigated the relationship between oviposition preferences and larval performance in the butterfly Anthocharis cardamines. Preferences were assessed using both cage experiments and field data on the proportion of host plant individuals utilized in natural populations. Larval performance was experimentally investigated using larvae descending from 419 oviposition events by 21 females on plants from 51 populations of two ploidy types of the perennial herb Cardamine pratensis. Neither ploidy type nor population identity influenced egg survival or larval development, but increased plant inflorescence size resulted in a larger final larval size. There was no correlation between female oviposition preference and egg survival or larval development under controlled conditions. Moreover, variation in larval performance among populations under controlled conditions was not correlated with the proportion of host plants utilized in the field. Lastly, first instar larvae added to plants rejected for oviposition by butterfly females during the preference experiment performed equally well as larvae growing on plants chosen for oviposition. The lack of a correlation between larval performance and oviposition preference for A. cardamines under both experimental and natural settings suggests that female host choice does not maximize the fitness of the individual offspring.  相似文献   

18.
Michelle H. Downey  Chris C. Nice 《Oikos》2011,120(8):1165-1174
A population of herbivorous insects that shifts to a novel host can experience selection pressures that result in adaptation to the new resource. Host race formation, considered an early stage of the speciation process, may result. The current study investigates host shifts and variation in traits potentially involved in the evolution of reproductive isolation among populations of the juniper hairstreak butterfly, Mitoura gryneus. Mitoura are closely associated with their host trees (Cupressaceae) and exhibit host plant fidelity: in addition to larval development and oviposition, host trees support male leks and mating. Female oviposition preference for the natal host, and differential fitness of larvae when reared on natal versus alternate hosts, are indications that specialization and local adaptation to the natal host plant are occurring. Populations with single host plant associations (Juniperus ashei, J. pinchotii and J. virginiana) as well as populations with multiple hosts (both J. ashei and J. pinchotii) were examined. Concordance between female preference and larval performance was found for J. ashei‐associated populations. Population‐level variation in the patterns of female preference and larval performance, both within and among host associations, may reflect differences in the timing and direction of colonization of hosts. For a single nominal species that otherwise exhibits no morphological or phenological differences, the experimental assessment of specialization and host fidelity in M. gryneus provides strong support for the hypothesis of ongoing host race formation in these butterflies.  相似文献   

19.
In some herbivorous insects, such as Coleoptera and aphids, not only the host species of larvae, but also those of adults should be considered as key determinants of potential fecundity because oviposition is affected by the quality of host species during both larval and adult stages. This study examined the relatively greater impact on host species of the larval or adult stage on oviposition of the willow leaf beetle Plagiodera versicolora Laicharting (Coleoptera: Chrysomelidae). We conducted an experiment using a 2 × 2 experimental design, in which either of two different host plant species was fed in larval and adult stages. Females fed on a locally unavailable host Salix eriocarpa in the adult stage did not lay any eggs, but those fed on the locally available host S. babylonica laid 67–75 eggs on average, irrespective of larval host species. Such reproductively inactive females fed S. eriocarpa as an adult host recovered reproductive activity within 3 weeks after changing the host species to S. babylonica. This result indicated that the host species fed in the adult stage had a greater impact on oviposition than in the larval stage.  相似文献   

20.
The relationship between oviposition prefer-ence and offspring performance of a leaf-mining moth (Paraleucoptera sinuella) on four Salicaceae species was investigated in 1997 and 1998. We observed the egg distribution pattern on different plant species in the field and carried out oviposition experiments in the laboratory to determine the preference of ovipositing females. We also examined larval survival, pupal mass, and developmental time to compare larval performance on each plant species. Egg density in the field differed significantly among plant species. However, egg density was not correlated exactly with demonstrated oviposition preference. No larvae could develop on two Salix species. This finding indicated that larval survival is the most critical index of larval performance. Larval performance on each plant species was correlated well with oviposition preference that was revealed by a no-choice experiment in the laboratory. However, this correlation was not found in the field. These results indicate that the preference–performance linkage that was observed under laboratory conditions, was not always maintained in the field. Received: September 25, 2000 / Accepted: April 27, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号