首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that dispersal and philopatry are components of a mixed evolutionarily stable strategy (ESS). The hypothesis predicts that fitness of dispersers should be equal to that of philopatric individuals. Alternatively, fitness of dispersers could be lower (the resident fitness hypothesis) or greater (the cost of dispersal hypothesis) than that of philopatric individuals. We compared fitness of individuals that moved to new habitats (emigrants) and those that remained within habitat boundaries (residents) in populations of the prairie vole, Microtus ochrogaster, and the meadow vole, M. pennsylvanicus. We established vole populations in four enclosures (). Within each enclosure, voles were free to move between four types of habitats that varied in the availability of supplemental food and the amount of vegetative cover. We analysed two fitness components: the survival rates of all individuals, and pregnancy rates of females. Our study showed that emigrants generally had greater fitness than residents and that the difference in fitness was habitat dependent (i.e. was greater when individuals were emigrating from low-quality habitats than from high-quality habitats). High-food, high-cover habitats were the only habitat types for which fitness of emigrants was lower than that of residents. Similar patterns occurred in both prairie voles and meadow voles. Our results support the cost of dispersal hypothesis.  相似文献   

2.
The interaction of animals with their food can yield insights into habitat characteristics, such as perceived predation risk and relative quality. We deployed experimental foraging patches in wetlands used by migrating dabbling ducks Anas spp. in the central Illinois River Valley to estimate variation in seed removal and giving‐up density (GUD; i.e. density of food remaining in patches following abandonment) with respect to seed density, seed size, seed depth in the substrate, substrate firmness, perceived predation risk, and an energetic profitability threshold (i.e. critical food density). Seed depth and the density of naturally‐occurring seeds outside of experimental plots affected seed removal and GUD in experimental patches more than perceived predation risk, seed density, seed size or substrate firmness. The greatest seed removal and lowest GUDs in experimental patches occurred when food resources in alternative foraging locations outside of plots (i.e. opportunity costs) appeared to be near or below a critical food density (i.e. 119–181 kg ha–1). Giving‐up densities varied substantially from a critical food density across a range of food densities in alternative foraging locations suggesting that fixed GUDs should not be used as surrogates for critical food densities in energetic carrying capacity models. Foraging and resting rates in and near experimental foraging patches did not reflect patterns of seed removal and were poor predictors of GUD and foraging habitat quality. Our results demonstrated the usefulness of GUDs as indicators of habitat quality for subsurface, benthic foragers relative to other available foraging patches and suggested that food may be limited for dabbling ducks during spring migration in some years in the midwestern USA.  相似文献   

3.
An animal's pattern of habitat use can reveal how different parts of its environment vary in quality based on the costs (such as predation risk) and benefits (such as food intake) of using each habitat. We studied klipspringer habitat use in Augrabies Falls National Park, South Africa using giving‐up densities (GUDs; the amount of food remaining in a resource patch following exploitation) in experimental food patches. We tested hypotheses related to how salient habitat variables might influence klipspringers' perceptions of foraging costs. At small spatial scales (3–4 m), klipspringer GUDs did not vary with cover and open microhabitats, or with the four cardinal aspects (shading) around shrubs. Adding water adjacent to food patches did not influence GUDs, showing that water is not a limiting complementary resource to food. Generally, klipspringers do not appear to be physiologically constrained. There was no difference in GUDs between four daily time periods, or between summer and winter; however, a significant interaction effect of time‐of‐day with season resulted from GUDs during the midday time period in winter being significantly higher (perceived value lower) than during the same time period in summer. At moderate spatial scales (10–60 m), klipspringer GUDs increased with distance from rocks because of increased predation risk. Based on GUDs collected at the largest scale (two 4.41‐ha grids), klipspringers preferred foraging at greater distances from drainage lines and on pebble and cobble substrates. Overall, this study has shown the efficacy of measuring GUDs to determine klipspringers' habitat utilization while foraging.  相似文献   

4.
Herbivores are thought to respond to the increased risk of attack by predators during foraging activities by concentrating feeding in safe habitats and by reducing feeding in the presence of predators. We tested these hypotheses by comparing tree seedling predation by meadow voles within large outdoor enclosures treated either with scent of large mammalian predators (red fox, bobcat, coyote) or a control scent (vinegar). In addition, we compared the distribution of voles in relation to naturally occurring variation in vegetation cover and the tendency of voles to attack tree seedlings planted in small patches with cover manipulation (intact, reduced or removed cover). Predator scent did not affect the rate or spatial distribution of tree seedling predation by voles, nor did it affect giving up densities (a surrogate of patch quitting harvest rate), survival rates, body size or habitat distribution of voles. In both predator scent and vinegar treatments voles preferred abundant vegetation providing good cover, which was also the site of almost all tree seedling predation. We conclude that large mammalian predator scent does not influence the perception by voles of the general safety of habitat, which is more strongly affected by the presence of cover.  相似文献   

5.
Differences in habitat use by prey and predator may lead to a shift of occupied niches and affect dynamics of their populations. The weasel Mustela nivalis specializes in hunting rodents, therefore habitat preferences of this predator may have important consequences for the population dynamics of its prey. We investigated habitat selection by weasels in the Bia?owie?a Forest in different seasons at the landscape and local scales, and evaluated possible consequences for the population dynamics of their prey. At the landscape scale, weasels preferred open habitats (both dry and wet) and avoided forest. In open areas they selected habitats with higher prey abundance, except during the low-density phase of the vole cycle, when the distribution of these predators was more uniform. Also in winter, the distribution of weasels at the landscape scale was proportional to available resources. In summer, within open dry and wet habitats, weasels preferred areas characterised by dense vegetation, but avoided poor plant cover. In winter, weasels used wet open areas proportionally to availability of habitats when hunting, but in contrast to summer, they rested only in habitats characterized by a lower water level, which offered better thermal conditions. At the local scale, the abundance of voles was a less important factor affecting the distribution of these predators. Although we were not able to provide direct evidence for the existence of refuges for voles, our results show that they may be located within habitat patches, where availability of dense plant cover and physiological constraints limit the activity of weasels. Our results indicate that in complex ecosystems of the temperate zone, characterized by a mosaic pattern of vegetation types and habitat specific dynamics of rodents, impact of weasels on prey populations might be limited.  相似文献   

6.
Predator odours and habitat structure are thought to influence the behaviour of small mammalian prey, which use them as cues to reduce risks of predation. We tested this general hypothesis for house mice, Mus domesticus, by manipulating fox odour density via addition of fox scats and habitat via patchy mowing of vegetation, for populations in 15 × 15-m field enclosures. Using giving-up densities (GUDs), the density of food remaining when an animal quits harvesting a patch, we measured foraging behaviours in response to these treatments. Mice consistently avoided open areas, leaving GUDs two to four times greater in these areas than in densely vegetated patches. However, mouse GUDs did not change in response to the addition of fox scats, even immediately after fresh scats were added. There was no interaction between fox odour and habitat use. We then tested whether habituation to fox odours had occurred, by comparing the individual responses to scats of eight mice born into enclosures with fox scats to those of eight mice born into scat-free enclosures and five wild mice. In smaller enclosures, GUDs of trays with scats did not differ from GUDs of trays without scats for any treatment. We conclude that exposure to high levels of fox odours did not alter the foraging behaviour of mice, but that mice did reduce foraging in areas where habitat was removed, perceiving predation risk to be greater in these areas than controls. We suggest further that studies using the ‘scat-at-trap’ technique, which have shown avoidance of predator odours by mice and other small mammals, may overestimate the general avoidance of predator odours by free-living prey, which must forage with a constant background of predator odours.  相似文献   

7.
We investigated habitat selection and movement characteristics of male weaselsMustela nivalis Linnaeus, 1766 during the breeding season through radio-telemetry in Kielder Forest (KF) in order to assess how weasel movement is influenced by prey dynamics, mate searching and predation risk, and whether the scale of weasel movement corresponds to the spatial scale of the asynchronous, multi-annual vole population cycles observed in KF. Weasels used habitats with a high proportion of grass cover to a much larger extend than habitats with less grass cover and moved through the latter habitats faster and / or straighter. Habitats with high amounts of grass cover also had the highest field vole abundance, although total rodent abundance did not differ between habitats. The selection of this habitat by weasels might reflect weasels preferring field voles as prey or avoiding habitats with little grass cover and high intraguild predation risk. Five out of 8 male weasels radio-tracked had low day-to-day site fidelity and moved between different clear cuts. Three other males were resident in a single clear cut. This variation may reflect mate searching by male weasels. The observation that most weasels (5 out of 8) roamed over large areas and the scale of their dispersal potential suggests, that if they regulated vole populations, they should have a greater synchronising effect on the spatial scale of vole population dynamics than what is observed in vole populations in KF.  相似文献   

8.
Jens Jacob  Joel S. Brown 《Oikos》2000,91(1):131-138
We used depletable food patches to determine the effect of microhabitat (mowed versus unmowed adjacent grasslands) and time (day versus night) on the foraging behavior of common voles (Microtus arvalis). The food remaining after 12‐h periods (giving‐up density, GUD) measured the vole's habitat selection under predation risk. In accord with several other rodent species and the effects of avian predators, voles had significantly lower GUDs in the unmowed than mowed portion of the grassland. GUDs in patches along the border between adjacent habitats were more similar to the risky mowed grassland than the safe unmowed grass. Time interacted strongly with microhabitat. In the mowed grass, voles had significantly higher GUDs at night than day. Whereas in the unmowed grass, GUDs were significantly higher during the day than night. Vole GUDs did not vary with time along the boundary. This suggests that predators are more abundant or effective in the mowed grass at night (owls?), and in the unmowed grass during the day (weasels?). In terms of predation risk, the voles perceived the mowed grass at night as the riskiest and the unmowed grass at night as the safest. Voles may have difficulties assessing resources under high predation risk: GUDs among patches were well equalized in the unmowed microhabitat whereas in the mowed grass only day GUDs did not vary significantly among patches. We linked these results to the vole's day‐night‐activity and life span. For the 533 voles live‐trapped at the study area, the ratio of day versus night captures for each individual served as an activity index and the span between first and last capture measured minimum life span. In accord with higher GUDs at night, very few individuals behaved selectively towards the night, but individual life expectancy increased with temporal opportunism. Microhabitat differences in GUDs reflect short‐term strategies of predator avoidance and the trapping data reflect long‐term patterns of anti‐predator behavior.  相似文献   

9.
Temporal variation of antipredatory behavior and a uniform distribution of predation risk over refuges and foraging sites may create foraging patterns different from those anticipated from risk in heterogenous habitats. We studied the temporal variation in foraging behavior of voles exposed to uniform mustelid predation risk and heterogeneous avian predation risk of different levels induced by vegetation types in eight outdoor enclosures (0.25 ha). We manipulated mustelid predation risk with weasel presence or absence and avian predation risk by reducing or providing local cover at experimental food patches. Foraging at food patches was monitored by collecting giving-up densities at artificial food patches, overall activity was automatically monitored, and mortality of voles was monitored by live-trapping and radiotracking. Voles depleted the food to lower levels in the sheltered patches than in the exposed ones. In enclosures with higher avian predation risk caused by lower vegetation height, trays were depleted to lower levels. Unexpectedly, voles foraged in more trays and depleted trays to lower levels in the presence of weasels than in the absence. Weasels match their prey's body size and locomotive abilities and therefore increase predation risk uniformly over both foraging sites and refuge sites that can both be entered by the predator. This reduces the costs of missing opportunities other than foraging. Voles changed their foraging strategy accordingly by specializing on the experimental food patches with predictable returns and probably reduced their foraging in the matrix of natural food source with unpredictable returns and high risk to encounter the weasel. Moreover, after 1 day of weasel presence, voles shifted their main foraging activities to avoid the diurnal weasel. This behavior facilitated bird predation, probably by nocturnal owls, and more voles were killed by birds than by weasels. Food patch use of voles in weasel enclosures increased with time. Voles had to balance the previously missed feeding opportunities by progressively concentrating on artificial food patches.  相似文献   

10.
We studied the predation rate and prey selection of the least weasel ( Mustela nivalis nivalis ) on its two most common prey species in boreal environments, the bank vole ( Clethrionomys glareolus ) and the field vole ( Microtus agrestis ), in large outdoor enclosures. We also studied the response of weasels to odours of the two species in the laboratory. The enclosure experiment was conducted using constant vole densities (16 voles/ha) but with varying relative abundance of the two species. Weasels showed higher predation rates on bank voles, and males had higher predation rate than females. Females killed disproportionately more of the more abundant prey species, but they preferred bank voles to field voles when both were equally available. Overall, the predation rate also increased with increasing abundance of bank voles. Therefore our results are in agreement with earlier laboratory results showing preference for bank voles, even if no intrinsic preference for odours of either species was observed in our laboratory study. We suggest that the least weasel hunts according to prey availability, prey aggregation and suitability of hunting habitat, and that this causes the observed dependence of least weasels on field voles and emphasises the role of the field vole in the vole-weasel interaction in cyclic vole populations. Furthermore, our results suggest that predation by weasels may facilitate the coexistence of the two vole species via predator switching, and that it may cause the observed synchrony in dynamics between vole species.  相似文献   

11.
Studies on competing mammalian species in the past have focused mainly on the competitive exclusion of one species from the preferred habitat of the other. Investigations on effects of competition and coexistence on individual fitness are rare . In this study we were able to measure effects of interspecific competition on major fitness components, using a system with two vole species in asymmetric competition. Survival, reproduction and space use of bank vole Clethrionomys glareolus females were monitored in 32 enclosed populations over four replicates of eight parallel run enclosures. Into half of the enclosures we introduced an additional number of field voles Microtus agrestis , a dominant competitor.
Survival of bank vole females was lower under competitive conditions. Total number of breeding females was lower in populations coexisting with competitors. Territory size of bank vole females decreased. Females body weight and litter size bank vole litters conceived during the experiment were not affected by interspecific competition. These characteristics should respond to differences in food resources, and territory size should increase if food was scarce, thus we found no indication of direct exploitation competition between the two species. Space use was overlapping between the species, but individuals of both species were never caught together in the same trap, indicating avoidance behaviour.
We conclude that adult bank vole females do suffer fitness consequences through interference competition with field voles, probably basing on increased number of aggressive encounters in the presence of the dominant species. Our results suggest, that direct interference rather than indirect exploitation competition may be the cause for observed fitness decrease in bank vole females.  相似文献   

12.
Individuals select for habitats at different scales. Can a species’ response to different spatial and temporal heterogeneities be placed in a common currency? Is it possible to rank the relative importance of different habitat features on the organism's behavior and ecology? Do the effects of different spatial and temporal heterogeneities interact in predictable ways? To address these questions, we quantified hyrax habitat use at a series of rocky outcrops (koppies) and an isolated gorge in Augrabies Falls National Park, South Africa. We measured the hyraxes’ perceptions of feeding opportunities and costs using giving‐up densities (GUDs) within experimental food patches. At very small spatial scales (2–3 m), we tested whether hyraxes have lower GUDs under cover (shrubs or rocks) or 2–3 m away in the open. Hyraxes valued cover highly, consistently showing lower GUDs in cover microhabitats. This preference did not result from differences in energetic costs, as hyraxes did not track sun in winter or shade in summer. At moderate spatial scales (10–80 m), we tested whether hyraxes act as central place foragers with lower GUDs closer to their dens. GUDs increased with increasing distance to dens at four koppies, but not at the gorge. At larger spatial scales, preferences differed between colonies based on differences in habitat structure, with hyraxes on similar structures (koppies) behaving similarly. We evaluated how foraging costs varied with temporal heterogeneity within the day, among days, and among seasons. Hyraxes showed their lowest GUDs in the early mornings and late afternoons. Hyraxes shifted foraging locations among days, which may result from sentinels shifting location on consecutive days and/or hyraxes managing their food. Differences between GUDs during the various sample periods were not seasonally correlated. We conclude that spatial and temporal habitat utilization by hyraxes may be driven more by predation risk rather than other costs.  相似文献   

13.
Habitat fragmentation causes negative population trends or even local extinction in many species. Understanding the role of fragmentation on behavior and space use of animals is an essential part of revealing the mechanism behind observed population declines. We studied experimentally the effects of small-scale habitat fragmentation on the distribution and movement of bank voles (Myodes glareolus) in seminatural enclosures. We predicted that besides habitat structure, availability of two resources, food for both sexes, and receptive females for males, determine individual distribution. We manipulated female density (either 0, 4, or 12 per enclosure) and followed movements of radio-collared males. We also studied the effect of unequal food distribution between the fragments on vole distribution. The habitat of 0.25-ha enclosures was manipulated by forming either one large, two medium-sized, or four small habitat patches surrounded by an inhospitable matrix. Female density and distribution clearly affected male spacing behavior. Males had larger home ranges in the medium female density enclosures. Furthermore, the use of the inhospitable and risky matrix area increased with habitat fragmentation. Food supplementation improved individual condition measured as body mass but did not affect breeding success. Our experiments demonstrated that both small-scale habitat fragmentation and resource distribution affect the behavior and condition of individuals. Increased fragmentation led to increased risk taking in both mating and foraging behavior. This should have direct survival and fitness consequences, and therefore our results may be extrapolated to population-level consequences of habitat fragmentation.  相似文献   

14.
Climate instability strongly affects overwintering conditions in organisms living in a strongly seasonal environment and consequently their survival and population dynamics. Food, predation and density effects are also strong during winter, but the effect of fragmentation of ground vegetation on ground-dwelling small mammals is unknown. Here, we report the results of a winter experiment on the effects of habitat fragmentation and food on experimental overwintering populations of bank voles Myodes glareolus. The study was conducted in large outdoor enclosures containing one large, two medium-sized or four small habitat patches or the total enclosure area covered with protective tall-grass habitat. During the stable snow cover of midwinter, only food affected the overwintering success, body condition, trappability and earlier onset of breeding in bank voles. However, after the snow thaw in spring, habitat fragmentation gained importance again, and breeding activities increased the movements of voles in the most fragmented habitat. The use of an open, risky matrix area increased along the habitat fragmentation. Our experiment showed that long-lasting stable snow cover protects overwintering individuals in otherwise exposed and risky ground habitats. We conclude that a stable winter climate and snow cover should even out habitat fragmentation effects on small mammals. However, along prolonged snow-free early winter and in an earlier spring thaw, this means loss of protection by snow cover both in terms of thermoregulation and predation. Thus, habitat cover is important for the survival of small ground-dwelling boreal mammals also during the non-breeding season.  相似文献   

15.
1.?Although the intrinsic habitat preferences of a species can be considered to be fixed, the realized habitat use depends on the prevailing abiotic and biotic conditions. Often the core habitats are occupied by dense and stable populations, while marginal habitats become occupied only at times of high density. In a community of interacting species, habitat uses of different species become inter-related, for example an increased density of a strong competitor forcing a weaker competitor to use more marginal habitats. 2.?We studied the spatio-temporal distribution patterns of three common small mammal species, the bank vole Myodes glareolus; the field vole Microtus agrestis; and the common shrew Sorex araneus, in a 4-year trapping study carried out on six large islands, each containing a mixture of three main habitat types (forest, field and clear-cut). We experimentally released least weasels (Mustela n. nivalis) to some of the islands to see how the focal species respond to increased predation pressure. 3.?Both vole species were largely restricted to their core habitats (bank voles to forests and field voles to fields) at times of low population density. With increasing density, the relative habitat use of both species increased in the clear-cut areas. The common shrew was a generalist in its habitat use at all population densities. 4.?The release of the weasels changed the habitat use of all study species. 5.?The vole species showed a stronger aggregated pattern than the common shrew, especially at low population density. The vole aggregations remained in the same localities between seasons, except in the case of bank voles after the weasels were released. 6.?Bank voles and field voles avoided each other at high density. 7.?We conclude that intrinsically differential habitat requirements and flexibility to modify habitat use facilitate the coexistence of the two competing vole species in mosaic landscapes consisting of boreal forests and open habitats.  相似文献   

16.
We previously developed a model, based on the precepts of optimal patch use, to compare habitat quality both within and between environments. Here we illustrate the use of this model in a study estimating quality of winter habitats (deer yards) of white‐tailed deer Odocoileus virginianus near the northern limit of their range by following their foraging behaviour. We compare giving up densities (GUDs), the amount of food remaining in a patch when a forager ceases foraging there, with and without the presence of supplemental food in order to draw inferences about the relative quality either of habitats within an environment or of distinct environments. We use our model to evaluate the impact of alterations to the winter habitat of deer at two distinct sites that differed in their level of predation risk and food availability. The first site, the Mont Rigaud deer yard, was surrounded by farm land and gradually‐expanding suburbs. Predators were rare and food was available in winter either in farm fields or around private homes but deer browsing in the past had left little food in the forest. At the second site, the Calumet deer yard, deer experienced a higher predation risk and did not have access to supplemental food from farm fields or private homes. However, past browsing by deer had not drastically reduced food in the forest. We offered food to deer in four habitats per site (forest, forest edge, clearing, clearing edge) with four to six replicates per site and measured the GUDs after 24 h. Analysis of these data, interpreted according to our model, suggests that deer are more sensitive to metabolic costs at Mont Rigaud and food availability at Calumet; predation risk does not alter deer behaviour between the two sites. Within habitats, deer at Mont Rigaud reacted to clearings as though they imposed higher metabolic costs than the forest. They also reacted to an interaction in which missed food costs influenced GUD only when metabolic costs were not too high. Thus our model appears to provide a convenient tool for comparing habitat quality both within and between environments.  相似文献   

17.
We investigated how the interplay between environmental factors and presence of neighbouring populations determines the distribution and abundance of a small, endangered rodent, the water vole ( Arvicola terrestris ). We studied thriving and non-fragmented populations of water voles in the absence of their main predator, the introduced American mink ( Mustela vison ). A low degree of population fragmentation, such as the one characterizing the studied populations, was probably typical of water voles before their decline started. We found that under these conditions water voles' distribution is mainly determined by three environmental factors: presence of freshwater, adequate food, and cover. Variance in other factors is well tolerated by water voles. We obtained this result by the use of rule-based models in two separate areas. The two models correctly classified 81% and 83% of the observed cases, respectively. When optimised on one area and cross-validated on the other area the performance of the models was still high (73% and 79%) indicating that the models were robust and generalizable. We also found that the density of animals was lower in sub-optimal than in optimal habitat. We then tested the hypothesis that the number of neighbouring colonies determines the probability of finding voles in a given section. We found that the presence of nearby colonies was an important factor in determining the presence of water voles in sub-optimal habitat, while isolated patches of suitable habitat were less likely to host water voles. These observations suggest the possible presence of a source-sink dynamic, where an optimal habitat acts as a source for populating sub-optimal habitats that may be considered a sink habitat. These findings are discussed in the context of water vole conservation.  相似文献   

18.
1. We studied the relative role of local habitat variables and landscape pattern on vole–plant interactions in a system with grey-sided voles ( Clethrionomys rufocanus (Sund.)) and their favourite winter food plant, bilberry ( Vaccinium myrtillus L.). The study was conducted during a vole peak year (1992–93) in a tundra area in northern Norway.
2. Using Mantel statistics we were able to separate the direct effects of the spatial patterning of habitats and the indirect effects due to spatial aggregations of similar habitats.
3. Results indicate that knowledge about the explicit spatial patterning of patches does not improve our understanding of the system. Instead, two local factors, vegetation height and bilberry biomass, explained more than 50% of the variation in cutting intensity in winter (defined as the proportion of above-ground shoots cut). Increasing vegetation height increased, and increasing bilberry biomass decreased, the cutting intensity.
4. The conclusion that grey-sided voles are able to distribute themselves relative to habitat quality was also partially supported by our estimated over-winter persistence by voles in the various habitats. Vole persistence was uncorrelated with vegetation height, the important predictor of autumn vole density, but tended to correlate with the deviation from the relation between vegetation height and autumn vole density. This conforms to the expectations from the theory of ideal-free habitat distribution.
5. The cue for vole habitat choice, i.e. vegetation height, indicates that either predation or freezing risk is important for voles when selecting over-wintering habitat.  相似文献   

19.
Foraging behavior is influenced by spatial and temporal habitat heterogeniety. Here we report on within-day foraging and perceived risk of predation by the striped mouse (Rhabdomys pumilio) in a grassland savannah with wooded “islands” using giving-up densities (GUD, amount of food left behind in depletable food patches). Higher GUDs correspond to higher forging costs. GUDs were measured six times per day at 2-h intervals from paired stations along fern–grass habitat boundaries at 3 and 6 m distances from 10 wooded islands. R. pumilio's GUDs varied significantly over the course of the day with highest GUDs during the afternoon hours of 1–3 pm, and lowest between 7 and 9 am in the morning. The same pattern was consistent for both habitats (fern and grass) and distances from the wooded islands. GUDs decreased with distance from the woody islands in both fern and grass habitats and were significantly lower in the fern habitat. This activity pattern suggests that R. pumilio responds to a spectrum of spatially and temporally varying risks from a variety of predators including aerial predators that increase risk as they make use of mid-day thermals.  相似文献   

20.
Small herbivores face risks of predation while foraging and are often forced to trade off food quality for safety. Life history, behaviour, and habitat of predator and prey can influence these trade‐offs. We compared how two sympatric rabbits (pygmy rabbit, Brachylagus idahoensis; mountain cottontail, Sylvilagus nuttallii) that differ in size, use of burrows, and habitat specialization in the sagebrush‐steppe of western North America respond to amount and orientation of concealment cover and proximity to burrow refuges when selecting food patches. We predicted that both rabbit species would prefer food patches that offered greater concealment and food patches that were closer to burrow refuges. However, because pygmy rabbits are small, obligate burrowers that are restricted to sagebrush habitats, we predicted that they would show stronger preferences for greater cover, orientation of concealment, and patches closer to burrow refuges. We offered two food patches to individuals of each species during three experiments that either varied in the amount of concealment cover, orientation of concealment cover, or distance from a burrow refuge. Both species preferred food patches that offered greater concealment, but pygmy rabbits generally preferred terrestrial and mountain cottontails preferred aerial concealment. Only pygmy rabbits preferred food patches closer to their burrow refuge. Different responses to concealment and proximity to burrow refuges by the two species likely reflect differences in perceived predation risks. Because terrestrial predators are able to dig for prey in burrows, animals like pygmy rabbits that rely on burrow refuges might select food patches based more on terrestrial concealment. In contrast, larger habitat generalists that do not rely on burrow refuges, like mountain cottontails, might trade off terrestrial concealment for visibility to detect approaching terrestrial predators. This study suggests that body size and evolutionary adaptations for using habitat, even in closely related species, might influence anti‐predator behaviors in prey species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号