首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation of natural and synthetic cannabinoid ligands, including (-)-Delta(9)-tetrahydrocannabinol, cannabinol, cannabidiol, HU-210, HU-211, CT3, CP 55, 940, WIN 55, 212-2, SR 14, 1716A, anandamide, 2-arachidonoylglycerol, and numerous novel analogs, has led to important findings that have contributed to a better understanding of the role of these compounds in physiological processes. Their potential use for medicinal purposes is also better understood as a result.  相似文献   

2.
Activation of neutrophils by recombinant interleukin 6   总被引:17,自引:0,他引:17  
The cytokine interleukin 6 (IL-6) has been shown to have multiple biological activities against many cellular targets. The present studies were designed to determine whether these activities extended to the neutrophil (PMN). Initially, we investigated the ability of IL-6 to modulate PMN-mediated antibody-dependent cellular cytotoxicity. The presence of IL-6 stimulated 51Cr release from labeled, opsonized targets by 67.1% (from 21.6 +/- 1.4% to 36.1 +/- 1.3% at 10 U of IL-6 (P less than 0.01)). IL-6 was not directly toxic to the target cells and stimulation of ADCC was shown to occur across a range of effector-to-target ratios. To investigate the basis of the capacity of IL-6 to stimulate PMN, we studied the effects of IL-6 on PMN chemotaxis, degranulation, and the respiratory burst. IL-6 was not chemotactic or chemokinetic for PMN. However, IL-6 stimulated lysozyme secretion from 14.1 +/- 2.5 to 23.7 +/- 3.6% at 100 U (P less than 0.01). IL-6 was a complete secretagogue, being able to induce the secretion of both the secretory granule marker lactoferrin (11.2 +/- 2.0 to 23.5 +/- 2.2%) and the primary granule marker beta-glucuronidase (5.0 +/- 1.0 to 18.2 +/- 4.0%). IL-6 was not able to directly stimulate the PMN respiratory burst. However, IL-6 did "prime" PMN, enhancing superoxide secretion by fMLP (10(-7) M)-treated PMN by 50.8% (5.9 +/- 1.0 to 8.9 +/- 1.5 nmol superoxide at 100 U of IL-6; P less than 0.01) and PMA (5.0 nM) by 54.3% (8.1 +/- 2.6 to 12.5 +/- 3.6 nmol; P less than 0.05). In conclusion, IL-6 is a PMN stimulant, enhancing the toxicity of PMN in an antibody-dependent cellular cytotoxicity assay. Enhanced cytotoxicity may have been mediated, at least in part, by the stimulation of secretion of toxic components from PMN targets and by the priming of stimulating respiratory burst activity.  相似文献   

3.
Effects of cannabinoids on endogenous potassium and calcium currents in HEK293 cells were studied using the whole-cell variant of the patch-clamp technique. The cannabinoid agonists WIN 55,212-2, methanandamide, and anandamide (1 microM) decreased the calcium current by 53.1 +/- 2.6, 47.5 +/- 1.2, and 38.8 +/- 3.1%, respectively, after transfection of human CB1 cannabinoid receptor (hCB1) cDNA into HEK293 cells. The delayed rectifier-like current was not changed after application of these agonists, but the inward rectifier was increased by 94.0 +/- 3.6, 83.7 +/- 5.1, and 63.0 +/- 2.5% after application of WIN 55,212-2, methanandamide, and anandamide, respectively. The effects of the cannabinoid antagonists (AM251, AM281, and AM630) on the inward rectifier and calcium currents were the opposite of those seen with cannabinoid agonists; thus, these compounds act as inverse agonists in this preparation. These results suggest that endogenous inward rectifier and calcium currents are modulated by cannabinoids in HEK293 cells, and that some expressed receptors may be constitutively active.  相似文献   

4.
Akinshola  B. E.  Chakrabarti  A.  Onaivi  E. S. 《Neurochemical research》1999,24(10):1233-1240
The discovery of endocannabinoids such as anandamide and the wide spread localization of cannabinoid receptors in the brain and peripheral tissues, suggests that the cannabinoid system represents a previously unrecognized ubiquitous net work in the nervous system, whose physiology and function is unfolding. In this study, we tested the hypothesis that some of the actions of anandamide are independent of a cannabinoid receptor mechanism. This was accomplished by the use of cannabinoid agonist and antagonist interaction in an in-vitro and in-vivo test systems. In-vitro, we used Xenopus laevis oocytes expression system and two-voltage clamp technique in combination with differential display polymerase chain reaction to determine whether the differential display of genes following treatment with anandamide may be linked to AMPA glutamate receptor. The differential expression of genes in vivo after the sub-acute administration of anandamide could not be directly linked with the AMPA glutamate receptor. In the voltage clamp studies we investigated the effects of anandamide on recombinant AMPA GluR3 sub-unit currents generated by kainic acid in oocytes expressing the AMPA glutamate receptor. In the in-vitro studies, we present evidence that anandamide inhibited the kainate activated currents in oocytes expressing AMPA glutamate receptor involves cAMP transduction via a cannabinoid receptor independent mechanism. In the in-vivo studies, SR141716A, the CB1 antagonist, induced anxiolysis, that was dependent on the mouse strain used in the anxiety model and blocked the anxiogenic effects of anandamide or methanandamide whereas SR141716A had no effect on the anandamide inhibition of kainate activated currents in-vitro.  相似文献   

5.
J Müller  U Botzenhardt  E M Lemmel 《Blut》1983,46(3):155-159
The influence of a guinea pig lymphokine preparation on the oxidative metabolism of human and guinea pig granulocytes of various sources was investigated. A dose-dependent increase of the oxidative burst following lymphokine challenge was observed. It occurred in unstimulated guinea pig peripheral polymorphonuclear leukocytes (PMN) and in prestimulated PMN obtained from the peritoneal cavity after glycogen injection as well. The lymphokine effect on the oxidative metabolism is not species-restricted because the guinea pig lymphokine preparation elicits an oxidative burst in human PMN, too. The increase caused by lymphokines is nearly of the same order of magnitude as that obtained with zymosan.  相似文献   

6.
Drug evaluations using neuronal networks cultured on microelectrode arrays   总被引:8,自引:0,他引:8  
We used spontaneously active neuronal networks derived from dissociated embryonic murine spinal cord and auditory cortex and grown on substrate-integrated thin-film microelectrodes to determine characteristic responses to the cannabinoid agonists anandamide (AN) and methanandamide (MA). AN and MA reversibly inhibited spike and burst production in both tissue types. Responses of 21 cultures ranging in age from 23 to 111 days in vitro (d.i.v.) showed high intra- and inter-culture reproducibility at all ages. However, responses were tissue and substance-dependent. AN and MA were equipotent in cortical cultures and terminated bursting and spiking at 2.5 +/- 0.9 microM (n = 10). Spinal cultures were shut-off by 1.3 +/- 0.7 microM (n = 15) AN, but required 5.8 +/- 1.2 microM MA for activity cessation. MA, but not AN, demonstrated a biphasic influence: excitation at 0.25-3.5 microM and suppression at 4-7.1 microM. Palmitoylethanolamide, a related lipophilic molecule with no reported binding to the CBI receptor (to which AN and MA bind in the central nervous system), did not affect network activity at concentrations up to 6.5 microM. Irreversible cessation of activity was observed after 30 min applications of AN or MA at > 7 microM.  相似文献   

7.
Symptomatic infection with Neisseria gonorrhoeae (Gc) results in a potent polymorphonuclear leukocyte (PMN)-driven inflammatory response, but the mechanisms by which Gc withstands PMN attack are poorly defined. Here we report that Gc can suppress the PMN oxidative burst, a central component of the PMN antimicrobial arsenal. Primary human PMNs remained viable after exposure to liquid-grown, exponential-phase, opacity-associated protein (Opa)-negative Gc of strains FA1090 and MS11 but did not generate reactive oxygen species (ROS), even after bacterial opsonization. Liquid-grown FA1090 Gc expressing OpaB, an Opa protein previously correlated with PMN ROS production, elicited a minor PMN oxidative burst. PMN ROS production in response to Opa(-) and OpaB+ Gc was markedly enhanced if bacteria were agar-grown or if liquid-grown bacteria were heat-killed. Liquid-grown Opa(-) Gc inhibited the PMN oxidative burst elicited by isogenic dead bacteria, formylated peptides or Staphylococcus aureus but did not inhibit PMN ROS production by OpaB+ Gc or phorbol esters. Suppression of the oxidative burst required Gc-PMN contact and bacterial protein synthesis but not phagocytosis. These results suggest that viable Gc directly inhibits PMN signalling pathways required for induction of the oxidative burst, which may contribute to gonococcal pathogenesis during inflammatory stages of gonorrhoeal disease.  相似文献   

8.
The relationship between glucose metabolism and the "respiratory burst" of phagocytosing polymorphonuclear leukocytes (PMN) was studied in a Renex 30-treated cell system of guinea pig PMN by a polarometric technique. Phagocytosing PMN were treated with a detergent (Renex 30) and recovery of respiratory activity was examined by addition of various concentrations of NADP and glucose-6-phosphate (G6P) to determine the availability of endogenously formed NADPH via the hexose monophosphate (HMP) pathway. The oxygen uptake by phagocytosing PMN ceased after the treatment with Renex 30 and was restored by the addition of NADP and G6P. Furthermore, the restoration of oxygen uptake was linearly proportional to the rate of NADPH formation on increase in either NADP or G6P concentration. Resting PMN showed no respiratory activity even in the presence of excess NADP and G6P, in which NADPH was formed at the same rate as in phagocytosing PMN. In a parallel experiment, recovery of respiratory activity was examined in the same system by addition of NAD and glyceraldehyde-3-phosphate (G3P) in that order to clarify whether the respiratory enzyme can utilize NADH formed via the glycolytic pathway. In contrast to the results in the NADPH-forming system, the addition of NAD and G3P induced slight oxygen uptake of Renex 30-treated PMN, but there was no difference in the oxygen uptake between resting and phagocytosis-activated PMN. The results indicated that the primary oxidase responsible for the "respiratory burst" is NADPH oxidase, and that its activity is coupled with glucose oxidation via the HMP pathway without the participation of other metabolic pathways such as glycolysis.  相似文献   

9.
There is an abundance of cannabinoid (CB) receptors for derivatives of cannabis plants in the brain and throughout the body, and several naturally occurring arachidonic acid derivatives can activate these receptors. The specific objective of this study was to activate these CB receptors in castrated male calves through administration of several CB agonists and to measure immediate changes in concentrations of several serum hormones, respiration rate, and sensitivity to pain. The rationale for the study was that exogenous activation of CB receptors might reveal whether the endogenous CB system (consisting of receptors and endogenous ligands) plays a role in the stress response of animals and specifically whether the activated CB system might be part of a coping mechanism to combat stress. Intravenous administration of three CB agonists (anandamide, methanandamide and WIN 55212-2) to nine castrated male calves under non-stress conditions provoked immediate increases of serum cortisol and respiration rate as well as rapidly caused hypoalgesia to cutaneous pain and thermal stimuli. Although anandamide and methanandamide did not affect serum prolactin, administration of another CB agonist (WIN 55212-2) did increase serum prolactin abruptly. None of the CB agonists affected serum growth hormone. In summary, many of the changes following administration of CB agonists were similar to a stress response in this species, but there were some agonist-specific differences, notably regarding prolactin secretion, as well as differences between calves and observations made in other species. Although CB receptors in calves may be activated by endogenous ligands during exposure to some stressors, the present results are also consistent with this CB system being part of a coping mechanism that helps animals deal with imposed stressors.  相似文献   

10.
Cuprophane membranes during haemodialysis significantly increase the plasma levels of C5a(desArg) (maximal 55 mug C5a(adesArg)/1 blood after 30 min) whereas Hemophane or Polysulphonemembranes induce only low plasma levels of C5a(desArg). C5a(desArg) generated in vitro by yeast incubation of autologous plasma stimulates PMN chemotaxis and oxidative metabolism but has no effect on enzyme release. Preincubation of whole blood with C5a(desArg) causes aggregation and changed oxidative burst activity of the isolated PMN. These changes are similar to those found in cells from patients after haemodialysis with cuprophane membranes. So the elevated plasma levels of C5a(desArg) after haemodialysis explain some of the changes in PMN functions, but additional mechanisms have to be assumed.  相似文献   

11.
The endogenous cannabinoid anandamide (arachidonylethanolamide) produces vasorelaxation in different vascular beds. In the present study, we found that anandamide and a metabolically stable analog, methanandamide, produced dose-dependent (10 nM-10 microM) vasorelaxation of approximately 80% in a rabbit aortic ring preparation in an endothelium-dependent manner. Non-endothelium-dependent vasorelaxation was observed to be a maximum of 20-22% at >10 microM methanandamide. The efficacious CB(1) receptor analogs desacetyllevonantradol (10 microM) and WIN55212-2 (10 microM) failed to produce vasorelaxation; however, the endothelium-dependent vasorelaxation evoked by methanandamide was partially (75%) blocked by the CB(1) receptor antagonist SR141716A. The VR(1) vanilloid receptor antagonist capsazepine or the calcitonin gene-related peptide (CGRP) antagonist CGRP-(8-37) partially attenuated (25%) the vasorelaxation in endothelium-intact preparations and greatly reduced the response in endothelium-denuded preparations. Pretreatment of aortic rings with N(G)-nitro-L-arginine methyl ester completely blocked the methanandamide-, capsaicin-, and CGRP-induced vasorelaxation. Pretreatment of aortic rings with pertussis toxin attenuated the methanandamide-induced vasorelaxation in endothelium-intact aortic rings, indicating the involvement of G(i/o) proteins in the vasorelaxation; however, pertussis toxin treatment failed to block the endothelium-independent response. Thus, in the rabbit aorta, methanandamide-induced vasorelaxation exhibits two components: 1) in endothelium-intact rings, an SR141716A-sensitive, non-CB(1) receptor component that requires pertussis toxin-sensitive G proteins and nitric oxide (NO) production; and 2) in endothelium-denuded rings, a component that is mediated by VR(1) vanilloid receptors and possibly by the subsequent release of CGRP that requires NO production but is independent of pertussis toxin-sensitive G proteins.  相似文献   

12.

Background

Mammalian spermatozoa acquire their full fertilizing ability (so called capacitation) within the female genital tract, where they are progressively exposed to inverse gradients of inhibiting and stimulating molecules.

Methodology/Principal Findings

In the present research, the effect on this process of anandamide, an endocannabinoid that can either activate or inhibit cannabinoid receptors depending on its concentration, and bicarbonate, an oviductal activatory molecule, was assessed, in order to study the role exerted by the type 1 cannabinoid receptor (CB1R) in the process of lipid membrane remodeling crucial to complete capacitation. To this aim, boar sperm were incubated in vitro under capacitating conditions (stimulated by bicarbonate) in the presence or in the absence of methanandamide (Met-AEA), a non-hydrolysable analogue of anandamide. The CB1R involvement was studied by using the specific inhibitor (SR141716) or mimicking its activation by adding a permeable cAMP analogue (8Br-cAMP). By an immunocytochemistry approach it was shown that the Met-AEA inhibits the bicarbonate-dependent translocation of CB1R from the post-equatorial to equatorial region of sperm head. In addition it was found that Met-AEA is able to prevent the bicarbonate-induced increase in membrane disorder and the cholesterol extraction, both preliminary to capacitation, acting through a CB1R-cAMP mediated pathway, as indicated by MC540 and filipin staining, EPR spectroscopy and biochemical analysis on whole membranes (CB1R activity) and on membrane enriched fraction (C/P content and anisotropy).

Conclusions/Significance

Altogether, these data demonstrate that the endocannabinoid system strongly inhibits the process of sperm capacitation, acting as membrane stabilizing agent, thus increasing the basic knowledge on capacitation-related signaling and potentially opening new perspectives in diagnostics and therapeutics of male infertility.  相似文献   

13.
Human neutrophils (PMN) have received little attention as to the role they play in host defense against Histoplasma capsulatum (Hc). We have characterized the binding and phagocytosis of Hc yeasts by human PMN and quantified the PMN respiratory burst in response to this organism. mAb specific for CD11a, CD11b, and CD11c all partially blocked the attachment of unopsonized yeasts to PMN; a mAb to CD18 inhibited attachment by greater than 90%. Thus, human PMN recognize and bind Hc yeasts via CD18 adhesion receptors as has been found for human cultured macrophages and alveolar macrophages. Unopsonized yeasts were phagocytosed by PMN, but phagocytosis was increased markedly by heat-labile and heat-stable serum opsonins. These opsonins promoted enhanced phagocytosis of yeasts by increasing the attachment of Hc yeasts to the PMN membrane. Phagocytosis of viable or heat-killed Hc yeasts by PMN did not induce the secretion of superoxide anion (O2-) as quantified by the reduction of cytochrome c. O2- was not detected when yeasts were opsonized in normal serum or immune serum, or at a ratio of yeasts to PMN of up to a 100:1. However, phagocytosis of opsonized yeasts by PMN did not prevent them from subsequently releasing O2- after further incubation with opsonized zymosan or PMA. Opsonized Hc yeasts clearly stimulated the PMN respiratory burst as quantified by intracellular reduction of nitroblue tetrazolium, reduction of cytochrome c in the presence of cytochalasin D, oxygen consumption, luminol-enhanced and nonenhanced chemiluminescence, and H2O2 production. These data suggest that phagocytosis of Hc yeasts by PMN is associated with intracellular entrapment of O2- that is not detectable by reduction of extracellular cytochrome c.  相似文献   

14.
Fortin CF  Lesur O  Fulop T 《FEBS letters》2007,581(6):1173-1178
Triggering receptor expressed on myeloid cell-1 (TREM-1) is a recently described receptor that has many effects on polymorphonuclear neutrophil (PMN), as the engagement of this receptor on PMN can induce phagocytosis, respiratory burst and degranulation. We studied the effects of aging on TREM-1 engagement in human PMN. PMN from elderly were found to have impaired response following TREM-1 engagement. Notably they were not able to modulate the TREM-1-induced respiratory burst as PMN from young did. TREM-1 engagement could not reverse PMN survival following incubation with LPS or GM-CSF in the elderly whereas it did in the young. The phosphorylation of TREM-1 signal transduction molecules was altered with aging. Finally, TREM-1 engagement could not drive the recruitment of TREM-1 in the lipid-rafts of the elderly explaining in part the altered response. The observed alterations in TREM-1 response are possibly an important contributing factor in the higher incidence of sepsis-related deaths in the elderly population.  相似文献   

15.
Hypochlorite-oxidized low-density lipoprotein (oxLDL) possesses a substantial proinflammatory potential by modulating respiratory burst activities of polymorphonuclear neutrophils (PMN). As evaluated by luminol-amplified chemiluminescence (CL) incubation of 10(6) PMN/ml with 70 nM oxLDL was followed by substantial induction of neutrophil oxidant (ROS) generation. We evaluated the inhibitory capacity of high-density lipoprotein (HDL) and its lipid and protein constituents against the activating effects of oxLDL. At a HDL or apolipoprotein AI/LDL protein ratio of 1.0, native HDL decreased the respiratory burst activation by 64%, followed by trypsinized HDL (57%) and native apoAI (43%). The inhibitory effects of native HDL did not require prior incubation with PMN or with oxLDL suggesting an instantaneously acting protective mechanism in the minute range. OxLDL modulated ROS production not only of resting PMN but also that of activated PMN, as indicated by a 14-fold increase in FMLP-stimulated CL response and a 50% decrease in zymosan-mediated CL answer. HDL itself did not protect PMN from activation by FMLP and zymosan. However, it clearly reduced effects of oxLDL on FMLP-activation and slightly counteracted the oxLDL-mediated decrease in zymosan-induced ROS generation. Taken together, these findings may offer new insight into atheroprotective mechanisms of HDL.  相似文献   

16.
The sesquiterpene lactone tubiferin was chemically purified from the brazilian native plant Wunderlichia crulsiana and identified by NMR and GC/MS data. Its ability to inhibit the respiratory burst of peritoneal inflammatory polymorphonuclear leukocytes (PMN) stimulated upon addition of phorbol miristate acetate (PMA), opsonized zymosan (OZ), and N-formyl-methionyl-leucyl-phenylalanine (fMLP) was evaluated. The tubiferin inhibition was more pronounced when PMN were stimulated through the protein kinase C pathway (PMA) compared to the alternative complement pathway (OZ). The inhibition when PMN were triggered by a chemoattractant stimulus (fMLP) was similar to that achieved with OZ-stimulated phagocytes. Tubiferin showed dose-dependent effects on the PMN respiratory burst triggered by the three different substances, and also decreased substantially the carrageenan-induced mice paw edema.  相似文献   

17.
Besides its function as a growth factor, the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) "primes" polymorphonuclear leukocytes (PMN) for enhanced biologic responses to a number of secondary stimuli. We examined the effect of priming PMN with GM-CSF on the production of [3H] platelet-activating factor (PAF) from [3H]acetate upon stimulation with the chemotactic factors FMLP and C5a. In PMN stimulated with the individual peptide mediators alone [3H]PAF levels were close to controls, whereas considerable amounts of [3H]PAF are formed after stimulation of PMN which have been preexposed to GM-CSF. The priming effect was concentration and time dependent. It was optimal after a preincubation period of 2 h. A maximum of [3H]PAF accumulation is reached within 2.5 min (C5a) and 5.0 min (FMLP) after activation of GM-CSF-primed PMN. In addition, we show that PAF isolated from PMN preincubated with GM-CSF and triggered with chemotactic factors is able to enhance the respiratory burst in PMN. PAF formed by sequentially activated PMN could contribute to the enhanced oxygen radical production and cytotoxicity in effector cells and play a role in modulating and amplifying inflammatory reactions.  相似文献   

18.

Background

Polymorphonuclear neutrophils (PMN) play a key role in host defences against invading microorganisms but can also potentiate detrimental inflammatory reactions in case of excessive or misdirected responses. Intravenous immunoglobulins (IVIg) are used to treat patients with immune deficiencies and, at higher doses, in autoimmune, allergic and systemic inflammatory disorders.

Methodology/Principal Findings

We used flow cytometry to examine the effects of IVIg on PMN functions and survival, using whole-blood conditions in order to avoid artifacts due to isolation procedures. IVIg at low concentrations induced PMN activation, as reflected by decreased L-selectin and increased CD11b expression at the PMN surface, oxidative burst enhancement, and prolonged cell survival. In contrast, IVIg at higher concentrations inhibited LPS-induced CD11b degranulation and oxidative burst priming, and counteracted LPS-induced PMN lifespan prolongation.

Conclusions/Significance

IVIg appears to have differential, concentration-dependent effects on PMN, possibly supporting the use of IVIg as either an anti-microbial or an anti-inflammatory agent.  相似文献   

19.
We examined the effects of 4-chloro-m-cresol (4-CmC, a potent and specific activator of ryanodine receptors) on Ca(2+)-release/influx and respiratory burst in freshly isolated human PMN as well as HL60 cells. 4-CmC induces Ca(2+) store-depletion in a dose-dependent manner at concentrations between 400muM and 3mM, however no dose-dependent effect on Ca(2+)-influx was found. 4-CmC depleted Ca(2+) stores that were shared with the GPC agonists such as fMLP and PAF, and therefore 4-CmC presumably depletes Ca(2+) from ER. Since the authentic ligand for RyR is cyclic ADP-ribose (cADPR), we assessed the functional relevance of RyR in PMN by studying the presence and function of membrane-bound ADP-ribosyl cyclase (CD38) in PMN. First, expression of CD38 was confirmed by RT-PCR using cDNA from HL60 cells. Second, PMN from trauma patients showed significantly enhanced CD38 expression than those from healthy volunteers. In addition, although no chemotaxis effect was detected by 4-CmC, it stimulated respiratory burst in PMN in a dose-dependent manner. Our findings suggest that RyRs exist in human PMN and that RyR pathway may play an active role in inflammatory PMN calcium signaling. 8-Br-cADPR and cyclic 3-deaza-ADP did not have inhibitory effects either on 4-CmC-induced Ca(2+) store-depletion or on respiratory burst, on the other hand, PLC inhibitor, U73122, completely attenuated both 4-CmC-induced Ca(2+) store-depletion and respiratory burst. Although it has been used as a specific activator of RyR, 4-CmC has non-specific effects which cause Ca(2+) store-depletion and respiratory burst at least in human PMN.  相似文献   

20.
Antisperm antibody (ASA)- and complement (C)-mediated immune injury to human sperm is thought to be caused in part by phagocytic neutrophils. To investigate this process, we co-cultured purified human polymorphonuclear leukocytes (PMN) with swim-up sperm in the presence of ASA-positive and ASA-negative sera and assayed for PMN respiratory burst activity, monitored by the release of superoxide anion (O2-) and hydrogen peroxide (H2O2). Phorbol myristate acetate (PMA) and opsonized zymosan were used as positive controls. Phagocytosis of ASA-positive and C-bound sperm by PMN did not enhance O2- production when compared to incubation of sperm with ASA-negative sera. Phagocytosis of ASA-positive and C-bound sperm also resulted in minimal release of H2O2 when compared with ASA-positive and C-negative sperm that were not phagocytosed. In contrast, PMN were maximally stimulated to release O2- in response to either opsonized zymosan or PMA. The kinetics of PMA-induced O2- release was unaffected by the presence of ASA-positive and C-bound sperm. Cytocentrifuge preparations of PMN incubated with ASA-positive and C-bound sperm revealed limited O2- release at the site of PMN/sperm contact. These results indicated that 1) phagocytosis of motile sperm by PMN requires the binding of both ASA and C to the sperm surface; 2) phagocytosis of ASA-positive and C-positive sperm by PMN fails to release reactive oxygen species; and 3) metabolic processes associated with PMN respiratory burst activity may not be coupled to the ingestion of ASA-positive and C-bound sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号