首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
植物的基因流及其在濒危植物保护中的作用   总被引:14,自引:0,他引:14  
基因流是影响植物种群遗传结构的重要因子,在濒危植物的保护中也有重要的意义。本文介绍了基因流的测定方法,分析了基因流的格局及其与种群遗传分化的关系,并介绍了基因流在濒危植物保护中的应用前景及途径  相似文献   

2.
植物交配系统及其在植物保护中的应用   总被引:1,自引:0,他引:1  
植物交配系统是影响植物居群遗传结构最关键的生物学因素之一。在具体实践中,对遗传育种方法的选择和植物保护策略的制定具有指导意义。本文回顾了植物交配系统的研究历史,分析了相关概念,讨论了植物交配系统的变异与进化,介绍了相关的基本原理和研究方法,对研究中使用的分析工具作了比较。对国内外植物交配系统研究的进展,讨论了在实际研究中的取样及针对不同植物的保护策略问题,强调了植物交配系统信息在植物保护中的重要性,认为在植物保护中应加强植物交配系统的研究。  相似文献   

3.
普通野生稻小种群的交配系统与遗传多样性   总被引:2,自引:0,他引:2  
小种群的遗传动态是保育遗传学关注的核心问题之一,而种群遗传动态又与交配系统密切相关.普通野生稻(Oryza rufipogon Griff.)是具有重要经济价值的濒危物种,目前其种群规模都较小,研究其小种群交配系统与遗传变异性对普通野生稻的保护具有重要意义.运用7对SSR引物,对采自江西东乡普通野生稻小种群的36份种茎和其中20个家系共计601份子代进行了分析.结果显示:该种群的表观异交率为0.318,多位点法估计(MLTR)的多位点异交率为0.481;50%以上的子代共享亲本,非随机交配明显;东乡普通野生稻种群交配系统属于混合交配类型.比较亲本和子代种群的遗传变异性显示:子代种群比亲本种群遗传变异性更丰富;子代种群的杂合子不足与种群变小自交比例上升有关;而亲本种群杂合子过剩可能与杂合基因型的选择优势有关.这些结果说明创造条件扩大种群规模对普通野生稻的原生境保护显得尤为重要.  相似文献   

4.
中国特有濒危植物夏蜡梅的交配系统   总被引:1,自引:0,他引:1  
夏蜡梅Sinocalycanthus chinensis具有局限的地理分布、片断化的生境、较小的种群规模和特殊的遗传结构,研究其交配系统,将为评估造成其目前这种遗传结构的内因、明确夏蜡梅遗传衰退机制和制定保护策略提供重要依据。通过野外观察、实验室检测和人工控制交配实验等研究,结果表明:夏蜡梅从开花到散粉雄蕊和退化雄蕊呈直立到平展再到合拢状的动态变化,当花药处于最平展状态时,柱头成熟具有粘性,可授性最强;说明夏蜡梅雌蕊先熟,雌雄配子存在一定的时空隔离,仅发育后期可遇。花粉胚珠比(P/O)、杂交指数(OCI)和人工控制交配实验的结果较为一致,表明夏蜡梅的交配系统为以异交为主的混合交配系统,部分自交亲和,完成授粉需要传粉者。综合种群结构、遗传结构和交配系统,夏蜡梅种群内遗传多样性降低而种群间遗传分化加剧最重要和直接的原因是生境的破坏、种群规模变小而导致的近交或自交比例增加。人工控制交配实验结果进一步表明,远交和混合授粉即用含有天台种群的花粉进行授粉具有显著的远交优势,远交结实率高达79.6%,平均每果实结实9.1粒种子,平均每胚珠结实0.75粒。因此,人为地促进2种群间的基因流将有利于夏蜡梅自然种群的恢复和遗传多样性的增加,对夏蜡梅保护策略的制定有重要参考价值。  相似文献   

5.
肖猛  李群  郭亮  唐琳  王丽  陈放 《生态学报》2015,35(5):1488-1495
桃儿七是一种具有重要药用价值的珍稀濒危植物。采用RAPD分子标记技术,对在四川西部地区的桃儿七7个自然种群的遗传多样性水平和遗传结构进行了分析。用12个RAPD引物对7个种群共140个样品进行了扩增,共得到111条清晰带,其中32条具有多态性,在物种水平上多态位点百分率(PPB)为28.83%,在种群内的多态位点百分率变动幅度为4.50%至16.22%。同其它一些濒危植物相比,桃儿七种群具有较低的遗传多样性(He=0.0622,Ho=0.0987)。7个自然种群间出现了很强的遗传分化,分化指数接近70%。种群间的基因流低(Nm=0.2240)。造成上述结果的可能原因是与桃儿七的繁育方式和有限的基因流等因素有关。应将遗传多样性相对较高的松潘县牟尼沟种群作为原位保护的核心种群进行保护,尽量保护所有现有种群。  相似文献   

6.
植物的交配系统及其进化机制与种群适应   总被引:29,自引:0,他引:29  
高等植物的繁殖方式远比高等动物的要复杂多样〔1,2〕,历来受到众多学者的关注。交配系统和作用于交配系统的选择力量,在达尔文时代的进化理论中就有着重要的地位〔3,4〕,达尔文本人对交配系统的进化结果也有着浓厚的兴趣〔5〕。植物交配系统方面的信息,对遗传育种〔6~10〕、濒危物种遗传多样性检测的取样策略〔1〕、种质遗传资源的保护和利用〔11~15〕有着重要的理论指导意义。然而,交配系统与相关概念之间有一定的交叉重合,易引起术语和概念的混乱,笔者将首先探讨交配系统及有关概念的范畴。当然最引人关注的是交…  相似文献   

7.
珍稀濒危植物海南粗榧种群遗传多样性研究   总被引:11,自引:0,他引:11  
利用RAPD技术对珍稀濒危植物海南粗榧(Cephalotaxus manniiHook.f.)遗传多样性水平,分布、濒危原因及物种保护等问题进行了探讨。结果表明:1、海南粗榧在海南岛的5个取样地点表现出低水平的遗传多样性,对环境变化物适应能力不强;2、海南粗榧种群内和种群间的遗传多样性所占比例有很大差异,绝大部分变异分布于种群内(DAN多样性为85.1%);种群间仅有较低程度的分化;3、人为砍伐,植被破坏,台风、被食用遗传漂变是海南粗榧遗传多样性低水平的主要原因,也是物种濒危的主要原因;4、对于呈零星分布的濒危植物海南粗榧的研究与保护,应充分考虑个体小环境之间的差异。考虑影响小种群的随机因素;5、应采取有力措施,就地保护现有种群,并寻求适当的方法迅速扩展种群,降低基因丧失率;选择遗传多样性较高且破坏相对较小的黎母岭种群作为保护重点;同时应加强对其他种群的保护与管理;6、海南粗榧种群内,种群音质遗传多样性在不同引物之间有较大差别。多态性位点百分率则是种群间的变化大于引物间的变化。  相似文献   

8.
利用RAPD技术对珍稀濒危植物海南粗榧(Cephalotaxus mannii Hook . f.)遗传多样性水平、分布、濒危原因及物种保护等问题进行了探讨.结果表明:1. 海南粗榧在海南岛的5个取样地点表现出低水平的遗传多样性,对环境变化的适应能力不强; 2. 海南粗榧种群内和种群间的遗传多样性所占比例有很大差异,绝大部分变异分布于种群内(DNA多样性为85.1%);种群间仅有较低程度的分化;3. 人为砍伐、植被破坏、台风、被食及遗传漂变是海南粗榧遗传多样性低水平的主要原因,也是物种濒危的主要原因;4. 对于呈零星分布的濒危植物海南粗榧的研究与保护,应充分考虑个体小环境之间的差异,考察影响小种群的随机因素;5. 应采取有力措施,就地保护现有种群,并寻求适当的方法迅速扩展种群,降低基因丧失率;选择遗传多样性较高且破坏相对较小的黎母岭种群作为保护重点;同时应加强对其他种群的保护与管理;6. 海南粗榧种群内、种群间的遗传多样性在不同引物之间有较大差别;多态性位点百分率则是种群间的变化大于引物间的变化.  相似文献   

9.
采用筛选的8条ISSR引物对濒危植物观光木13个野生种群的遗传多样性及遗传结构进行分析,结果显示:物种和种群水平上多态性位点百分率分别为79.67%和46.84%,Shannon表型多样性指数分别为0.3880和0.2192,与木兰科其他近缘植物相比,遗传多样性水平较高;分子方差分析表明,观光木野生种群间遗传分化系数为0.3752,种群间存在显著的遗传距离;STRUCTURE分析和UPGMA聚类表明,参试的13个野生种群可分为3大类群;相关性分析表明,种群间遗传距离与其地理距离呈显著正相关。南昆山、笔架山、弄相山种群的遗传多样性最丰富,建议优先加以保护。  相似文献   

10.
华木莲(Sinomanglietia glauca)在探讨木兰科系统演化与被子植物起源等方面具有重要科学价值,但其分布区域狭窄、种群规模较小,被列为我国濒危植物和极小种群植物。该文在系统综述华木莲生物生态学特性和更新维持机制的基础上,对华木莲的现代濒危原因进行了总结:(1)华木莲属古老残遗濒危植物,环境变迁、瓶颈效应、高频自交和遗传漂变,导致其遗传多样性下降、适应性差;(2)喜光喜肥的生物生态学特性和群落种间竞争驱赶作用,"林—窗"游击式更新是华木莲种群延续的重要方式,然而当前人类干扰导致有效林窗供给不足、种子传播效率下降、"游击"机会减少,更新难以完成;(3)毛竹扩张与林下箬竹过度增长严重影响华木莲开花结实,并妨碍其幼苗更新。今后应加强华木莲谱系地理与群落系统发育、群落环境对华木莲生长发育的影响及其应答、林窗更新机制与种子长距传播、群落结构调整与保护技术、遗传复壮与迁地保护等方面研究,为华木莲以及相似生物生态学特征的濒危植物保护提供理论指导。  相似文献   

11.
Sexual selection in lek-breeding species might drastically lower male effective population size, with potentially important consequences for evolutionary and conservation biology. Using field-monitoring and parental-assignment methods, we analyzed sex-specific variances in breeding success in a population of European treefrogs, to (1) help understanding the dynamics of genetic variance at sex-specific loci, and (2) better quantify the risk posed by genetic drift in this species locally endangered by habitat fragmentation. The variance in male mating success turned out to be markedly lower than values obtained from other amphibian species with polygamous mating systems. The ratio of effective breeding size to census breeding size was only slightly lower in males (0.44) than in females (0.57), in line with the patterns of genetic diversity previously reported from H. arborea sex chromosomes. Combining our results with data on age at maturity and adult survival, we show that the negative effect of the mating system is furthermore compensated by the effect of delayed maturity, so that the estimated instantaneous effective size broadly corresponded to census breeding size. We conclude that the lek-breeding system of treefrogs impacts only weakly the patterns of genetic diversity on sex-linked genes and the ability of natural populations to resist genetic drift.  相似文献   

12.
Russello MA  Amato G 《Molecular ecology》2007,16(12):2405-2406
Seven years into this new millennium, species and habitat loss continue at an accelerated rate. While there have been individual examples of conservation success, the trend towards catastrophic loss of biological diversity persists. If we are to be successful in saving even a handful of critically endangered species, it is clear that they will need to be intensively managed using a variety of in situ and ex situ approaches. The highest profile ex situ conservation strategy is captive breeding. Although its relative role in an overall conservation management plan varies, captive breeding may present the only viable option for propagating the future of a species once rendered extinct in the wild. The study of Iyengar et al. in this issue of Molecular Ecology on one such species, the scimitar-horned oryx (Oryx dammah), represents an important contribution to ex situ conservation, demonstrating how critical insights into demographic history and population genetic structure obtained using molecular approaches may significantly contribute to captive breeding and reintroduction strategies.  相似文献   

13.
Information on demographic, genetic, and environmental parameters of wild and captive animal populations has proven to be crucial to conservation programs and strategies. Genetic approaches in conservation programs of Brazilian snakes remain scarce despite their importance for critically endangered species, such as Bothrops insularis, the golden lancehead, which is endemic to Ilha da Queimada Grande, coast of São Paulo State, Brazil. This study aims to (a) characterize the genetic diversity of ex situ and in situ populations of B. insularis using heterologous microsatellites; (b) investigate genetic structure among and within these populations; and (c) provide data for the conservation program of the species. Twelve informative microsatellites obtained from three species of the B. neuwiedi group were used to access genetic diversity indexes of ex situ and in situ populations. Low‐to‐medium genetic diversity parameters were found. Both populations showed low—albeit significant—values of system of mating inbreeding coefficient, whereas only the in situ population showed a significant value of pedigree inbreeding coefficient. Significant values of genetic differentiation indexes suggest a small differentiation between the two populations. Discriminant analysis of principal components (DAPC) recovered five clusters. No geographic relationship was found in the island, suggesting the occurrence of gene flow. Also, our data allowed the establishment of six preferential breeding couples, aiming to minimize inbreeding and elucidate uncertain parental relationships in the captive population. In a conservation perspective, continuous monitoring of both populations is demanded: it involves the incorporation of new individuals from the island into the captive population to avoid inbreeding and to achieve the recommended allelic similarity between the two populations. At last, we recommend that the genetic data support researches as a base to maintain a viable and healthy captive population, highly genetically similar to the in situ one, which is crucial for considering a reintroduction process into the island.  相似文献   

14.
Ex situ conservation plays an increasingly important role in the conservation of endangered species. Molecular genetic markers can be helpful to assess the status of captive breeding programmes. We present the first molecular genetic analysis of the captive population of the Arabian sand cat (Felis margarita harrisoni) using microsatellites. Our data indicates that the captive population of F. m. harrisoni comprises three genetic clusters, which are based on different founder lineages. Genetic diversity was relatively high, the effective population size even exceeded the number of founders. This was presumably caused by subsequently integrating unrelated, genetically diverse founders into the captive population and a careful management based on minimizing kinship. However, we detected an error in the studbook records, which might have led to incestuous matings and underlines the usefulness of molecular evaluations in captive breeding programmes for endangered species.  相似文献   

15.
In this work, we report on the population genetic structure of the endangered tree species Manilkara huberi, an Amazonian tree species intensely exploited due to the high density and resistance of its wood. We investigated the patterns of spatial distribution, genetic structure, and mating system using 7 microsatellite loci and here discuss the consequences for conservation and management of the species. To examine the population genetic structure, 481 adult trees and 810 seedlings were sampled from an area of 200 ha from a natural population in FLONA Tapajós, PA, Brazil. We found relatively high and consistent inbreeding levels (intrapopulation fixation index [f] 0.175 and 0.240) and a significant spatial genetic structure up to a radius of approximately 300 m, most likely due to a limited seed and pollen flow. The multilocus (tm) population outcrossing rate was high (0.995), suggesting that the species is predominantly allogamous with a pollen flow restricted to 47 m. These results suggest that M. huberi is spatially structured, consistent with a model of isolation by distance. Fragmentation may therefore cause the loss of subpopulations, suggesting that management programs for production and conservation should include large areas. The genetic data also revealed that for ex situ conservation, seeds should be collected from more than 175 maternal trees, in order to keep an effective population size of 500. Furthermore, as the species is widely distributed across the Amazon Forest, samples should include several populations in order to represent the highest genetic diversity possible. These results provide a blueprint to guide the production and conservation management policies of this valuable timber species.  相似文献   

16.
BACKGROUND AND AIMS: A knowledge of natural populations' breeding systems is important in order to implement in situ and ex situ management and conservation practices. Using microsatellite markers, three Oryza glumaepatula populations from Brazil were studied to determine the breeding system and genetic structure parameters of this species. METHODS: Each population represented by ten families with ten individuals per family was studied using eight microsatellite primers. Families of the Rio Xingu population (XI) were obtained from the greenhouse, whereas families from Rio Solimoes (SO) and Rio Paraguay (PG) were collected from the wild. Amplified products electrophoresed on non-denaturing polyacrylamide gels were visualized with a silver staining procedure. The mating system parameters were analysed based on the mixed mating model (software MLTR) while genetic structure analyses of the three populations and their families were performed using the FSTAT software. KEY RESULTS: The mean numbers of alleles per loci were 2.5, 3.9 and 2.5, respectively for the XI, PG and SO populations. Compared with their families, higher values for the observed heterozygosity and gene diversity were estimated for the parental populations. The subdivision (based on R(ST)) and inbreeding (F(IS)) in the SO and PG populations had similar effects, while inbreeding was the main effect in the families. Multilocus outcrossing rates varied from 0.011 to 0.223 in the three populations, indicating divergence in the outcrossing rates among O. glumaepatula populations. For the species (considering SO and PG populations together) an intermediate value was observed (tm = 0.116). Biparental inbreeding varied from 0.008 to 0.123, contributing to the selfing rate in these populations. More than 50 % of the outcrossing occurred between related individuals. CONCLUSIONS: The results indicated divergence in the mating system among O. glumaepatula populations, with consequences for conservation practices. The mating system of this species was classified as mixed with a predominance of self-fertilization.  相似文献   

17.
Polecat populations show a very low genetic diversity and a high inbreeding coefficient. Furthermore, the estimate of effective population size is alarmingly low. Polecats Mustela putorius populations are structured into scattered breeding sub-units usually made up of one male and two females, according to a polygynous mating system. Because a strict spatio-temporal segregation was observed between males and females, we propose to call individualistic such species. We suggest that the solitary habits of individualistic species may result in or worsen a high inbreeding and exacerbate their conservation issue, a crucial perspective for critically endangered species such as the European mink.  相似文献   

18.
This paper describes the characterization of the population structure of an ex situ population of Phalaenopsis gigantea, an endangered epiphytic orchid endemic to Sabah, Malaysia, using 30 polymorphic microsatellite loci. The objective of this investigation was the estimation of the genetic distance between accessions within an ex situ population on the basis of which a conservation strategy aimed at selective breeding and restoration was developed.  相似文献   

19.
Li X  Ding X  Chu B  Zhou Q  Ding G  Gu S 《Genetica》2008,133(2):159-166
Dendrobium officinale is a critically endangered perennial herb endemic to China. Determining the levels of genetic diversity and patterns of population genetic structure of this species would assist in its conservation and management. Data of 12 populations were used to assess its genetic diversity and population structure, employing the method of amplified fragment length polymorphism (AFLP). A high level of genetic diversity was detected (H (E) = 0.269) with POPGENE. As revealed by AMOVA analysis, there was moderate variation between pairs of populations with Phi(ST) values ranging from 0.047 to 0.578 and on average 26.97% of the genetic variation occurred among populations. Three main clusters were shown in UPGMA dendrogram using TFPGA, which is consistent with the result of principal coordinate ananlysis (PCO) using NTSYS. Keeping a stable environment is critical for the in situ conservation and management of this rare and endangered plant, and for ex situ conservation it is important to design an integrated germplasm bank.  相似文献   

20.
Dipteryx alata is a native fruit tree species of the cerrado (Brazilian savanna) that has great economic potential because of its multiple uses. Knowledge of how the genetic variability of this species is organized within and among populations would be useful for genetic conservation and breeding programs. We used nine simple sequence repeat (SSR) primers developed for Dipteryx odorata to evaluate the genetic structure of three populations of D. alata located in central Brazil based on a leaf sample analysis from 101 adults. The outcrossing rate was evaluated using 300 open-pollinated offspring from 25 seed-trees. Pollen dispersal was measured by parentage analysis. We used spatial genetic structure (SGS) to test the minimal distance for harvesting seeds in conservation and breeding programs. Our data indicate that the populations studied had a high degree of genetic diversity and population structure, as suggested by the high level of divergence among populations . The estimated outcrossing rate suggested a mixed mating system, and the intrapopulation fixation index was influenced by SGS. We conclude that seed harvesting for genetic conservation and breeding programs requires a minimum distance between trees of 196 m to avoid collecting seeds from related seed-trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号