首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Conformational change in the α subunit of Escherichia coli proton-translocating ATPase was studied using trypsin. The subunit was cleaved with a small amount of trypsin (1 μg/mg subunit) to peptides of less than 8000 daltons. On the other hand, the subunit was cleaved to two main polypeptides (30,000 and 25,000 daltons) in the presence of sufficient ATP (1 mm-0.5 μm) to saturate the high-affinity site of the subunit. Analysis of digests of the subunit combined with fluorescent maleimide suggested that the subunit was digested in the middle of the polypeptide chain in the presence of the nucleotide. ADP and adenylyl imidodiphosphate had the same effect as ATP. These results suggest that the conformation of the subunit changed to form two trypsin-resistant domains upon binding of ATP to the high-affinity site.  相似文献   

2.
3.
F1FO-ATP synthase is a crucial metabolic enzyme that uses the proton motive force from respiration to regenerate ATP. For maximum thermodynamic efficiency ATP synthesis should be fully reversible, but the enzyme from Paracoccus denitrificans catalyzes ATP hydrolysis at far lower rates than it catalyzes ATP synthesis, an effect often attributed to its unique ζ subunit. Recently, we showed that deleting ζ increases hydrolysis only marginally, indicating that other common inhibitory mechanisms such as inhibition by the C-terminal domain of the ε subunit (ε-CTD) or Mg-ADP may be more important. Here, we created mutants lacking the ε-CTD, and double mutants lacking both the ε-CTD and ζ subunit. No substantial activation of ATP hydrolysis was observed in any of these strains. Instead, hydrolysis in even the double mutant strains could only be activated by oxyanions, the detergent lauryldimethylamine oxide, or a proton motive force, which are all considered to release Mg-ADP inhibition. Our results establish that P. denitrificans ATP synthase is regulated by a combination of the ε and ζ subunits and Mg-ADP inhibition.  相似文献   

4.
Zeng X  Ni Z  Shi X  Wei J  Shen Y 《Photosynthesis research》2005,83(3):307-315
The previous work in our lab showed that the spinach chloroplast ATP synthase ε mutant with 3 amino acid residues deleted from the N-terminus had much lower ability to inhibit ATP hydrolysis and block proton leakage in comparison to a mutant with 1 or 2 residues deleted from the N-terminus. The present study aimed at determining whether there is special importance in the structure and function of the N-terminal third residue of the chloroplast ε subunit. The leucine residue at the N-terminal third site (Leu3) of the spinach chloroplast ε subunit was replaced with Ile, Phe, Thr, Arg, Glu or Pro by site-directed mutagenesis, forming mutants εL3I, εL3F, εL3T, εL3R, εL3E and εL3P, respectively. These ε variants all showed lower abilities to inhibit ATP hydrolysis and to block proton leakage, as compared to the wild type ε subunit (εWT). The abilities of mutants εL3I and εL3F to restore the ATP synthesis activity of reconstituted membranes were higher than those of εWT, but the abilities of the other ε variants were lower than that of εWT. These results indicate that the hydrophobic and neutral characteristics of Leu3 of the chloroplast ε subunit are very important for its ability to inhibit ATP hydrolysis and block proton leakage, and for the ATP synthesis ability of ATP synthase.  相似文献   

5.
The conserved residue Gly47 of the chloroplast ATP synthase ε subunit was substituted with Leu, Arg, Ala and Glu by site-directed mutagenesis. This process generated the mutants εG47L, εG47R, εG47A and εG47E, respectively. All the ε variants showed lower inhibitory effects on the soluble CF1(-ε) Ca^2 -ATPase compared with wild-type ε. In reduced conditions, εG47E and εG47R had a lower inhibitory effect on the oxidized CF1(-ε) Ca^2 -ATPase compared with wild-type ε. In contrast, εG47L and εG47Aincreased the Ca^2 -ATPase activity of soluble oxidized CF1(-ε). The replacement of Gly47 significantly impaired the interaction between the subunit ε and γ in an in vitro binding assay. Further study showed that all ε variants were more effective in blocking proton leakage from the thylakoid membranes. This enhanced ATP synthesis of the chloroplast and restored ATP synthesis activity of the reconstituted membranes to a level that was more efficient than that achieved by wild-type ε. These results indicate that the conserved Gly47 residue of the ε subunit is very important for maintaining the structure and function of the ε subunitand may affect the interaction between the ε subunit, β subunit of CF1 and subunit Ⅲ of CF0, therebyregulating the ATP hydrolysis and synthesis, as well as the proton translocation role of the subunit Ⅲ of CF0.  相似文献   

6.
In contrast to the well-characterized spinach ( Spinacea oleracea) chloroplast ATP synthase (CF1–CFo), the properties of the chloroplast ATP synthase from pea (Pisum sativum ) have not been as intensively studied. Preliminary data suggested that the regulatory properties of the two enzymes differ. In the absence of activating treatments the ATPase activity of pea thylakoids in the dark was higher than that in spinach thylakoids. When assayed in the presence of sulfite, the MgATPase activity of pea thylakoids was inhibited to a maximum of 67% by tentoxin, indicating that the dark ATPase activity is in part catalyzed by CF1–CFo. The ATPase activity of purified pea CF1 was also higher than that of spinach CF1 in the absence of activating treatments. These differences could result from the different regulatory properties of the pea or subunit or both. The pea subunit was less effective in binding to or inhibiting the ATPase activity of pea o r spinach CF1 deficient in (CF1-). Spinach inhibited the ATPase activity of pea CF1- at lower concentrations than pea . The gene encoding the pea subunit was cloned and over-expressed. Recombinant pea did not restore low proton permeability to spinach thylakoid membranes reconstitituted with spinach CF1-, although pea was effective when tested with pea thylakoids reconstitituted with pea CF1-. These results confirm earlier suggestions that the C-terminal region of is important in -CF1 and -CFo interactions.  相似文献   

7.
Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADα in complex with MO25α. The structure reveals an intricate web of interactions between STRADα and MO25α involving the αC-helix of STRADα, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADα binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADα for MO25α, and conversely, binding of MO25α promotes interaction of STRADα with ATP. Mutagenesis studies reveal that association of STRADα with either ATP or MO25α is essential for LKB1 activation. We conclude that ATP and MO25α cooperate to maintain STRADα in an “active” closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADα that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE) syndrome. We demonstrate this mutation destabilizes STRADα and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADα to activate LKB1 is dependent on a closed “active” conformation, aided by ATP and MO25α binding. Thus, the function of STRADα is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations.  相似文献   

8.
We present evidence for a unique covalent modification of a nuclear-encoded precursor protein targeted to plant mitochondria. We investigated the early events of in vitro import for the mitochondrial precursor of the ATP synthase F1 subunit from Nicotiana plumbaginifolia (pF1) into plant mitochondria. When pF1 of 59 kDa was incubated with mitochondria isolated from different higher-plant species, a band of 61 kDa was generated. The 61 kDa protein was a covalently modified form of the 59 kDa pF1. The modification was dependent on the 25 amino acid long N-terminal region of the presequence of pF1. The modification was catalysed by an enzyme located in the outer mitochondrial membrane which was specific for higher plants and could not be washed off from the membrane by urea, KCl or EDTA. The modification was ATP- and Ca2+-dependent, but it was not affected by inhibitors of protein kinases. No inhibition of the modification was observed with phosphatase, methylation or acylation inhibitors. The modification occurs prior to translocation through the mitochondrial outer membrane. Inhibition of the modification process does not affect the import of the precursor protein, hence precursor modification was not a prerequisite for import. Both the modified and the unmodified pF1 proteins were strongly associated with the mitochondrial outer membrane.  相似文献   

9.
The ATP synthase (FOF1) of Escherichia coli couples the translocation of protons across the cytoplasmic membrane to the synthesis or hydrolysis of ATP. This nanomotor is composed of the rotor c10γϵ and the stator ab2α3β3δ. To study the assembly of this multimeric enzyme complex consisting of membrane-integral as well as peripheral hydrophilic subunits, we combined nearest neighbor analyses by intermolecular disulfide bond formation or purification of partially assembled FOF1 complexes by affinity chromatography with the use of mutants synthesizing different sets of FOF1 subunits. Together with a time-delayed in vivo assembly system, the results demonstrate that FOF1 is assembled in a modular way via subcomplexes, thereby preventing the formation of a functional H+-translocating unit as intermediate product. Surprisingly, during the biogenesis of FOF1, F1 subunit δ is the key player in generating stable FO. Subunit δ serves as clamp between ab2 and c10α3β3γϵ and guarantees that the open H+ channel is concomitantly assembled within coupled FOF1 to maintain the low membrane proton permeability essential for viability, a general prerequisite for the assembly of multimeric H+-translocating enzymes.  相似文献   

10.
《BBA》2006,1757(5-6):304-310
Fo·F1-ATP synthase in inside-out coupled vesicles derived from Paracoccus denitrificans catalyzes Pi-dependent proton-translocating ATPase reaction if exposed to prior energization that relieves ADP·Mg2+-induced inhibition (Zharova, T.V. and Vinogradov, A.D. (2004) J. Biol. Chem.,279, 12319–12324). Here we present evidence that the presence of medium ADP is required for the steady-state energetically self-sustained coupled ATP hydrolysis. The initial rapid ATPase activity is declined to a certain level if the reaction proceeds in the presence of the ADP-consuming, ATP-regenerating system (pyruvate kinase/phosphoenol pyruvate). The rate and extent of the enzyme de-activation are inversely proportional to the steady-state ADP concentration, which is altered by various amounts of pyruvate kinase at constant ATPase level. The half-maximal rate of stationary ATP hydrolysis is reached at an ADP concentration of 8 × 10−6 M. The kinetic scheme is proposed explaining the requirement of the reaction products (ADP and Pi), the substrates of ATP synthesis, in the medium for proton-translocating ATP hydrolysis by P. denitrificans Fo·F1-ATP synthase.  相似文献   

11.
F1-ATPase is a rotary molecular machine with a subunit stoichiometry of α3β3γ1δ1ε1. It has a robust ATP-hydrolyzing activity due to effective cooperativity between the three catalytic sites. It is believed that the central γ rotor dictates the sequential conformational changes to the catalytic sites in the α3β3 core to achieve cooperativity. However, recent studies of the thermophilic Bacillus PS3 F1-ATPase have suggested that the α3β3 core can intrinsically undergo unidirectional cooperative catalysis (T. Uchihashi et al., Science 333:755-758, 2011). The mechanism of this γ-independent ATP-hydrolyzing mode is unclear. Here, a unique genetic screen allowed us to identify specific mutations in the α and β subunits that stimulate ATP hydrolysis by the mitochondrial F1-ATPase in the absence of γ. We found that the F446I mutation in the α subunit and G419D mutation in the β subunit suppress cell death by the loss of mitochondrial DNA (ρo) in a Kluyveromyces lactis mutant lacking γ. In organello ATPase assays showed that the mutant but not the wild-type γ-less F1 complexes retained 21.7 to 44.6% of the native F1-ATPase activity. The γ-less F1 subcomplex was assembled but was structurally and functionally labile in vitro. Phe446 in the α subunit and Gly419 in the β subunit are located on the N-terminal edge of the DELSEED loops in both subunits. Mutations in these two sites likely enhance the transmission of catalytically required conformational changes to an adjacent α or β subunit, thereby allowing robust ATP hydrolysis and cell survival under ρo conditions. This work may help our understanding of the structural elements required for ATP hydrolysis by the α3β3 subcomplex.  相似文献   

12.
We use specific restriction fragments as defined primers for DNA synthesis on single-stranded circular phage fd DNA. These structures are relatively poor templates for a highly purified DNA polymerase α from Xenopus laevis eggs. However, DNA synthesis is stimulated about 5-fold by addition of ATP to the reaction mixture. We show that the deoxynucleotide polymers, synthesized in the presence of ATP, are significantly longer than those produced in the absence of ATP. We also show that this effect is due to a more tenacious binding of DNA polymerase α to DNA and conclude that ATP increases the processivity of the enzyme.  相似文献   

13.
The ATP synthase from Escherichia coli is a prototype of the ATP synthases that are found in many bacteria, in the mitochondria of eukaryotes, and in the chloroplasts of plants. It contains eight different types of subunits that have traditionally been divided into F1, a water-soluble catalytic sector, and Fo, a membrane-bound ion transporting sector. In the current rotary model for ATP synthesis, the subunits can be divided into rotor and stator subunits. Several lines of evidence indicate that is one of the three rotor subunits, which rotate through 360 degrees. The three-dimensional structure of is known and its interactions with other subunits have been explored by several approaches. In light of recent work by our group and that of others, the role of in the ATP synthase from E. coli is discussed.  相似文献   

14.
Blue native polyacrylamide gel electrophoresis (BN-PAGE) analyses of detergent mitochondrial extracts have provided evidence that the yeast ATP synthase could form dimers. Cross-linking experiments performed on a modified version of the i-subunit of this enzyme indicate the existence of such ATP synthase dimers in the yeast inner mitochondrial membrane. We also show that the first transmembrane segment of the eukaryotic b-subunit (bTM1), like the two supernumerary subunits e and g, is required for dimerization/oligomerization of ATP synthases. Unlike mitochondria of wild-type cells that display a well-developed cristae network, mitochondria of yeast cells devoid of subunits e, g, or bTM1 present morphological alterations with an abnormal proliferation of the inner mitochondrial membrane. From these observations, we postulate that an anomalous organization of the inner mitochondrial membrane occurs due to the absence of ATP synthase dimers/oligomers. We provide a model in which the mitochondrial ATP synthase is a key element in cristae morphogenesis.  相似文献   

15.
The temperature-dependent rotation of F1-ATPase γ subunit was observed in Vmax conditions at low viscous drag using a 60-nm gold bead (Nakanishi-Matsui, M., Kashiwagi, S., Hosokawa, H., Cipriano, D. J., Dunn, S. D., Wada, Y., and Futai, M. (2006) J. Biol. Chem. 281, 4126–4131). The Arrhenius slopes of the speed of the individual 120° steps and reciprocal of the pause length between rotation steps were very similar, indicating a flat energy pathway followed by the rotationally coupled catalytic cycle. In contrast, the Arrhenius slope of the reciprocal pause length of the γM23K mutant F1 was significantly increased, whereas that of the rotation rate was similar to wild type. The effects of the rotor γM23K substitution and the counteracting effects of βE381D mutation in the interacting stator subunits demonstrate that the rotor-stator interactions play critical roles in the utilization of stored elastic energy. The γM23K enzyme must overcome an abrupt activation energy barrier, forcing it onto a less favored pathway that results in uncoupling catalysis from rotation.F-ATPase (FoF1), consisting of the catalytic sector F13β3γδϵ) and the transmembrane proton transport sector Fo (ab2c10), synthesizes or hydrolyzes ATP coupled with proton transport (for reviews, see Ref. 16). As Abrahams et al. (7) discovered in the first high resolution x-ray structure, a critical feature of the F1-ATPase is the inherent asymmetry of the three β subunits in different conformations, βTP, βDP, and βE, referring to the nucleotide bound in each catalytic site, ATP, ADP, or empty, respectively. A rotational mechanism has been firmly established mostly based on direct observation in single molecule experiments of the behavior of the rotor complex ϵγc10, relative to the stator complex α3β3δab2 (reviewed in Ref. 1). ATP hydrolysis-dependent rotation of the γ and ϵ subunits in purified bacterial F1 (8, 9), the ϵγc10 complex in detergent solubilized FoF1 (1013), and the ϵγc10 complexin FoF1 in lipid bilayers (14) were shown experimentally by single molecule observations using fluorescent actin filament as a probe. Relative rotation of the single copy Fo a subunit was also shown in F0F1, which was immobilized through the ring of ∼10 c subunits, suggesting that the rotor and stator are interchangeable mechanical units (14). ATP synthesis by F-ATPase is believed to follow the reverse mechanism of ATP hydrolysis because mechanically induced rotation of the γ subunit in immobilized F1 in the presence of ADP and Pi results in net ATP synthesis (15, 16). There remain many questions about the mechanism of coupling between catalysis and transport via mechanical rotation. In particular, the mechanism of coupling H+ transport to rotation of the subunit c10 ring is still not well understood (4).In contrast, there is considerably more information on the mechanism of coupling catalysis to γ and ϵ subunit rotation. Observations of γ subunit rotation in the catalytic F1 sector are consistent with Boyer''s binding change model (17); thus coupling between the chemistry and rotation can be assessed by studies of the soluble F1, and these findings relate to the mechanism of the entire ATP synthase complex. The γ subunit rotates relative to the α3β3 hexamer in distinct 120° steps. A 120° rotation step consisting of pause and rotation substeps appears to correspond to the hydrolysis of one ATP, assuming that three ATP molecules are hydrolyzed per 360° revolution (18). Additional pauses observed at low ATP concentrations are attributed to the “ATP waiting” dwell (19). Yasuda et al. (19) and Shimabukuro et al. (20) further resolved that each 120° step occurred in two substeps: an 80° substep whose onset was dependent upon the Mg·ATP concentration, and a 40° substep, which was not affected by substrate concentration (19). The pause before the 80° substep, the ATP waiting dwell became shorter with increasing [Mg·ATP]. In contrast, the pause duration before the 40° rotation step was modulated by the slow hydrolysis rate of ATPγS2 or by the catalytic site mutant βE190D (in the Bacillus PS3 F1), which was found to significantly increase the length of the catalytic dwell (20). These data together indicate that the dwell before the 40° step is the “catalytic dwell” (20) and defines the order of the substeps during the 120° rotation step observed in high Mg·ATP concentrations (21).In this paper, we address the question of when the rate-limiting step of steady state catalysis occurs, with respect to the rotational behavior. Pre-steady state analysis of the burst kinetics of ATP hydrolysis at nearly Vmax conditions demonstrated that the rate-limiting transition state occurs after the reversible hydrolysis/synthesis step and before release of phosphate (Pi) (22, 23). The rate-limiting step is likely associated with a rotation step because a γ-β cross-linked enzyme is still able to undergo the initial ATP hydrolysis, but the rotation-impeded enzyme is unable to release Pi (23). Significantly, the kinetics of steady state hydrolysis can only be assessed when the Mg·ATP concentration is high enough to fill all three catalytic sites. The only model consistent with these data is one that involves all three catalytic sites. During each 120° catalytic cycle, one site binds ATP, a different site carries out reversible hydrolysis/synthesis, and the third site releases product Pi and ADP (22, 23).Steady state analyses, which take advantage of a particular γ subunit mutation γM23K (24), are consistent with this model. Replacement of the conserved γMet-23 with lysine causes an uncoupling between catalysis and γ subunit rotation caused by altered interactions between γ and β subunits (25). Importantly, Al-Shawi and Nakamoto (26) and Al-Shawi et al. (25, 27) found that the γM23K mutation strongly affected the rate-limiting transition state of steady state ATP hydrolysis and ATP synthesis. The slope of the Arrhenius plots and thus the energy of activation were significantly increased in the mutant enzyme. Several second site suppressor mutations, mostly in the γ subunit (28, 29) but also in the β subunits (30, 31), were genetically identified because they restored coupled ATP synthesis. Significantly, all were in the γ-β interface. Thermodynamic analyses found that the second site suppressors generally compensated for the primary γM23K mutations by reducing the increased activation energy (25, 27, 31). Although most of the second site mutations were found distant from the γM23K site, the x-ray crystal structures (7) suggested that γM23K may directly interact with conserved βGlu-381. As expected, replacement of βGlu-381 with aspartate also suppressed the uncoupling effects of γM23K (31).To identify the rate-limiting transition state step in the rotational behavior, we analyzed the temperature dependence of the γM23K mutant in Vmax conditions observed in single molecule experiments. Interestingly, direct observation of this mutant using the micron-length actin filaments did not detect differences in the rotation behavior at room temperature (9). In contrast, we find in the data presented here that there is dramatic effect of the mutation on the temperature dependence of the length of the catalytic dwell or pause between the 120° rotation steps. This is likely because of two factors: first, we used a bead small enough not to invoke a drag on the rotation (32), and second, the temperature dependence of the rate of the rotation steps is critical for the analyses of the mechanism.  相似文献   

16.
F1 is a soluble part of FoF1-ATP synthase and performs a catalytic process of ATP hydrolysis and synthesis. The γ subunit, which is the rotary shaft of F1 motor, is composed of N-terminal and C-terminal helices domains, and a protruding Rossman-fold domain located between the two major helices parts. The N-terminal and C-terminal helices domains of γ assemble into an antiparallel coiled-coil structure, and are almost embedded into the stator ring composed of α3β3 hexamer of the F1 molecule. Cyanobacterial and chloroplast γ subunits harbor an inserted sequence of 30 or 39 amino acids length within the Rossman-fold domain in comparison with bacterial or mitochondrial γ. To understand the structure–function relationship of the γ subunit, we prepared a mutant F1-ATP synthase of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1, in which the γ subunit is split into N-terminal α-helix along with the inserted sequence and the remaining C-terminal part. The obtained mutant showed higher ATP-hydrolysis activities than those containing the wild-type γ. Contrary to our expectation, the complexes containing the split γ subunits were mostly devoid of the C-terminal helix. We further investigated the effect of post-assembly cleavage of the γ subunit. We demonstrate that insertion of the nick between two helices of the γ subunit imparts resistance to ADP inhibition, and the C-terminal α-helix is dispensable for ATP-hydrolysis activity and plays a crucial role in the assembly of F1-ATP synthase.  相似文献   

17.
A great deal of progress has been made in understanding both the structure and the mechanism of F1-ATPase. The primary structure is now fully known for at least five species. Sequence comparison between chloroplast, photobacteria, aerobic bacteria, and mitochondrial representatives allow us to infer more general functional relationships and evolutionary trends. Although the F1 moiety is the most studied segment of the H+-ATPase complex, there is not a full understanding of the mechanism and regulation of its hydrolytic activity. The subunit is now known to contain one and probably two nucleotide binding domains, one of which is believed to be a catalytic site. Recently, two similar models have been proposed to attempt to describe the active part of the subunits. These models are mainly an attempt to use the structure of adenylate kinase to represent a more general working model for nucleotide binding phosphotransferases. Labelling experiments seem to indicate that several critical residues outside the region described by the adenylate kinase part of this model are also actively involved in the ATPase activity. New models will have to be introduced to include these regions. Finally, it seems that a consensus has been reached with regard to a broad acceptance of the asymmetric structure of the F1-moiety. In addition, recent experimental evidence points toward the presence of nonequivalent subunits to describe the functional activity of the F1-ATPase. A summary diagram of the conformational and binding states of the enzyme including the nonequivalent subunit is presented. Additional research is essential to establish the role of the minor subunits—and of the asymmetry they introduce in F1—on the physiological function of the enzyme.  相似文献   

18.
Effect of ε subunit on the nucleotide binding to the catalytic sites of F1-ATPase from the thermophilic Bacillus PS3 (TF1) has been tested by using α3β3γ and α3β3γε complexes of TF1 containing βTyr341 to Trp substitution. The nucleotide binding was assessed with fluorescence quenching of the introduced Trp. The presence of the ε subunit weakened ADP binding to each catalytic site, especially to the highest affinity site. This effect was also observed when GDP or IDP was used. The ratio of the affinity of the lowest to the highest nucleotide binding sites had changed two orders of magnitude by the ε subunit. The differences may relate to the energy required for the binding change in the ATP synthesis reaction and contribute to the efficient ATP synthesis.  相似文献   

19.
One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase.  相似文献   

20.
Recent data suggest the source of F(0)F(1) ATP synthase determines a significant and surprising difference in the size of a putative rotating ring of integral membrane subunits of F(0); this can be correlated with biochemical data suggesting there is variation in the number of protons translocated per ATP synthesised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号