首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
To understand the role of a crowded physiological environment in the pathogenesis of neurodegenerative diseases, we report the following. 1) The formation of fibrous aggregates of the human Tau fragment Tau-(244–441), when hyperphosphorylated by glycogen synthase kinase-3β, is dramatically facilitated by the addition of crowding agents. 2) Fibril formation of nonphosphorylated Tau-(244–441) is only promoted moderately by macromolecular crowding. 3) Macromolecular crowding dramatically accelerates amyloid formation by human prion protein. A sigmoidal equation has been used to fit these kinetic data, including published data of human α-synuclein, yielding lag times and apparent rate constants for the growth of fibrils for these amyloidogenic proteins. These biochemical data indicate that crowded cell-like environments significantly accelerate the nucleation step of fibril formation of human Tau fragment/human prion protein/human α-synuclein (a significant decrease in the lag time). These results can in principle be predicted based on some known data concerning protein concentration effects on fibril formation both in vitro and in vivo. Furthermore, macromolecular crowding causes human prion protein to form short fibrils and nonfibrillar particles with lower conformational stability and higher protease resistance activity, compared with those formed in dilute solutions. Our data demonstrate that a crowded physiological environment could play an important role in the pathogenesis of neurodegenerative diseases by accelerating amyloidogenic protein misfolding and inducing human prion fibril fragmentation, which is considered to be an essential step in prion replication.Amyloid fibrils associated with neurodegenerative diseases such as Alzheimer disease, Parkinson disease, Huntington disease, and transmissible spongiform encephalopathy (TSE)3 (15) can be considered biologically relevant failures of the cellular protein quality control mechanisms (6) consisting of molecular chaperones and proteases (7). Up to now, about 20 different proteins with unrelated sequences and tertiary structures are known to form fibrous aggregates associated with various neurodegenerative diseases. These amyloidogenic proteins include both natively unfolded proteins, such as human Tau protein (3) and human α-synuclein (8), and folded globular proteins such as human prion protein (4). There are two faces of protein misfolding in neurodegeneration as follows: a gain of toxic function and a loss of physiological function, which can even occur in combination (9).Human Tau protein, a marker for Alzheimer disease, forms filaments in the brains of patients with Alzheimer disease (3, 10, 11). It has been found that hyperphosphorylation of Tau reduces the binding affinity between Tau and tubulin and contributes to the self-association of Tau and the formation of Tau paired helical filaments (3, 1113). It has been proposed that glycogen synthase kinase-3β (GSK-3β) hyperphosphorylation of Tau plays an important role in Alzheimer disease (14, 15), and GSK-3β induces an Alzheimer disease-like hyperphosphorylation of Tau when overexpressed in cultured human neurons (16).A large body of data strongly suggests Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, and other TSEs are caused by prions (4). Prions are infectious proteins that can transmit biological information by propagating protein misfolding and aggregation (17). The infectious agent is believed to consist entirely of the prion protein (PrP) and is devoid of nucleic acid (4, 17). Prion biogenesis is associated with the normal protease-sensitive form of the protein (cellular PrP molecule, PrPC) undergoing structural change into an abnormal, protease-resistant, disease-causing isoform of prion protein (PrPSc) (4, 17). Although the mechanism by which PrPC is converted to PrPSc in TSE-infected cells and in vivo is not clear, data from cell-free reactions suggest this process is akin to autocatalytic polymerization (18).Misfolding of Tau and prion proteins has been traditionally and widely studied in dilute solutions (10, 1921). However, the physiological environment is poorly modeled by such dilute solutions, and biochemical reactions in vivo differ greatly from those in dilute solutions (22). The proteins associated with neurodegenerative diseases form fibrils in a physiological environment crowded with other background macromolecules (2226), such as proteins, glycosaminoglycans, and proteoglycans (23). Crowding is not confined to cellular interiors but also occurs in the extracellular matrix of tissues (24) and takes place at membrane surfaces (27). For example, blood plasma contains ∼80 g/liter protein, a concentration sufficient to cause significant crowding effects (24). Polysaccharides also contribute to crowding, especially in the extracellular matrix of tissues such as collagen (23, 26). The conversion of PrP from a normal soluble conformation PrPC to its pathogenic conformation PrPSc is believed to occur on the cell surface, in the endocytic vesicles, or in the crowded extracellular matrix (18). Thus, macromolecular crowding on the cell surface and in the extracellular matrix may play an important role in the conformational transition and amyloid formation of PrP in vivo, which have not been fully characterized yet. In vitro, such a crowded environment can be achieved experimentally by adding high concentrations of single or mixed nonspecific crowding agents to the system (2331). Recently, it has been demonstrated that macromolecular crowding significantly enhances the rate of amyloid formation of α-synuclein (32, 33), amyloid-β peptides (27), and human apolipoprotein C-II (34). However, the role of the crowded physiological environment in the pathogenesis of neurodegenerative diseases is poorly understood so far.To address the contributions of crowded physiological environments on the pathogenesis of neurodegenerative diseases, we report here that macromolecular crowding dramatically accelerates fibril formation by human Tau fragment and by human prion protein under physiological conditions. Our results indicate that macromolecular crowding significantly accelerates the nucleation step of fibril formation of human Tau fragment/human prion protein/human α-synuclein by fitting the data to a sigmoidal equation (35, 36). Furthermore, macromolecular crowding causes human prion protein to form short fibrils and nonfibrillar particles with lower conformational stability and higher protease resistance activity, compared with those formed in dilute solutions.  相似文献   

2.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

3.
4.
A Boolean network is a model used to study the interactions between different genes in genetic regulatory networks. In this paper, we present several algorithms using gene ordering and feedback vertex sets to identify singleton attractors and small attractors in Boolean networks. We analyze the average case time complexities of some of the proposed algorithms. For instance, it is shown that the outdegree-based ordering algorithm for finding singleton attractors works in time for , which is much faster than the naive time algorithm, where is the number of genes and is the maximum indegree. We performed extensive computational experiments on these algorithms, which resulted in good agreement with theoretical results. In contrast, we give a simple and complete proof for showing that finding an attractor with the shortest period is NP-hard.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

5.
6.
7.
8.
9.
A variety of high-throughput methods have made it possible to generate detailed temporal expression data for a single gene or large numbers of genes. Common methods for analysis of these large data sets can be problematic. One challenge is the comparison of temporal expression data obtained from different growth conditions where the patterns of expression may be shifted in time. We propose the use of wavelet analysis to transform the data obtained under different growth conditions to permit comparison of expression patterns from experiments that have time shifts or delays. We demonstrate this approach using detailed temporal data for a single bacterial gene obtained under 72 different growth conditions. This general strategy can be applied in the analysis of data sets of thousands of genes under different conditions.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

10.
Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum). These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences), to the background frequency divergence (typicality of the amino acid probability distribution in each sequence), and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database). This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29]  相似文献   

11.
Decomposing a biological sequence into its functional regions is an important prerequisite to understand the molecule. Using the multiple alignments of the sequences, we evaluate a segmentation based on the type of statistical variation pattern from each of the aligned sites. To describe such a more general pattern, we introduce multipattern consensus regions as segmented regions based on conserved as well as interdependent patterns. Thus the proposed consensus region considers patterns that are statistically significant and extends a local neighborhood. To show its relevance in protein sequence analysis, a cancer suppressor gene called p53 is examined. The results show significant associations between the detected regions and tendency of mutations, location on the 3D structure, and cancer hereditable factors that can be inferred from human twin studies.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]  相似文献   

12.
13.
14.
15.
16.
Although PTIP is implicated in the DNA damage response, through interactions with 53BP1, the function of PTIP in the DNA damage response remain elusive. Here, we show that RNF8 controls DNA damage-induced nuclear foci formation of PTIP, which in turn regulates 53BP1 localization to the DNA damage sites. In addition, SMC1, a substrate of ATM, could not be phosphorylated at the DNA damage sites in the absence of PTIP. The PTIP-dependent pathway is important for DNA double strand breaks repair and DNA damage-induced intra-S phase checkpoint activation. Taken together, these results suggest that the role of PTIP in the DNA damage response is downstream of RNF8 and upstream of 53BP1. Thus, PTIP regulates 53BP1-dependent signaling pathway following DNA damage.The DNA damage response pathways are signal transduction pathways with DNA damage sensors, mediators, and effectors, which are essential for maintaining genomic stability (13). Following DNA double strand breaks, histone H2AX at the DNA damage sites is rapidly phosphorylated by ATM/ATR/DNAPK (410), a family homologous to phosphoinositide 3-kinases (11, 12). Subsequently, phospho-H2AX (γH2AX) provides the platform for accumulation of a larger group of DNA damage response factors, such as MDC1, BRCA1, 53BP1, and the MRE11·RAD50·NBS1 complex (13, 14), at the DNA damage sites. Translocalization of these proteins to the DNA double strand breaks (DSBs)3 facilitates DNA damage checkpoint activation and enhances the efficiency of DNA damage repair (14, 15).Recently, PTIP (Pax2 transactivation domain-interacting protein, or Paxip) has been identified as a DNA damage response protein and is required for cell survival when exposed to ionizing radiation (IR) (1, 1618). PTIP is a 1069-amino acid nuclear protein and has been originally identified in a yeast two-hybrid screening as a partner of Pax2 (19). Genetic deletion of the PTIP gene in mice leads to early embryonic lethality at embryonic day 8.5, suggesting that PTIP is essential for early embryonic development (20). Structurally, PTIP contains six tandem BRCT (BRCA1 carboxyl-terminal) domains (1618, 21). The BRCT domain is a phospho-group binding domain that mediates protein-protein interactions (17, 22, 23). Interestingly, the BRCT domain has been found in a large number of proteins involved in the cellular response to DNA damages, such as BRCA1, MDC1, and 53BP1 (7, 2429). Like other BRCT domain-containing proteins, upon exposure to IR, PTIP forms nuclear foci at the DSBs, which is dependent on its BRCT domains (1618). By protein affinity purification, PTIP has been found in two large complexes. One includes the histone H3K4 methyltransferase ALR and its associated cofactors, the other contains DNA damage response proteins, including 53BP1 and SMC1 (30, 31). Further experiments have revealed that DNA damage enhances the interaction between PTIP and 53BP1 (18, 31).To elucidate the DNA damage response pathways, we have examined the upstream and downstream partners of PTIP. Here, we report that PTIP is downstream of RNF8 and upstream of 53BP1 in response to DNA damage. Moreover, PTIP and 53BP1 are required for the phospho-ATM association with the chromatin, which phosphorylates SMC1 at the DSBs. This PTIP-dependent pathway is involved in DSBs repair.  相似文献   

17.
18.
Phosphorylation of simian virus 40 large tumor (T) antigen on threonine 124 is essential for viral DNA replication. A mutant T antigen (T124A), in which this threonine was replaced by alanine, has helicase activity, assembles double hexamers on viral-origin DNA, and locally distorts the origin DNA structure, but it cannot catalyze origin DNA unwinding. A class of T-antigen mutants with single-amino-acid substitutions in the DNA binding domain (class 4) has remarkably similar properties, although these proteins are phosphorylated on threonine 124, as we show here. By comparing the DNA binding properties of the T124A and class 4 mutant proteins with those of the wild type, we demonstrate that mutant double hexamers bind to viral origin DNA with reduced cooperativity. We report that T124A T-antigen subunits impair the ability of double hexamers containing the wild-type protein to unwind viral origin DNA, suggesting that interactions between hexamers are also required for unwinding. Moreover, the T124A and class 4 mutant T antigens display dominant-negative inhibition of the viral DNA replication activity of the wild-type protein. We propose that interactions between hexamers, mediated through the DNA binding domain and the N-terminal phosphorylated region of T antigen, play a role in double-hexamer assembly and origin DNA unwinding. We speculate that one surface of the DNA binding domain in each subunit of one hexamer may form a docking site that can interact with each subunit in the other hexamer, either directly with the N-terminal phosphorylated region or with another region that is regulated by phosphorylation.

The initiation of simian virus 40 (SV40) DNA replication by the viral T antigen is a complex series of events that begins when T antigen binds specifically to a palindromic arrangement of four GAGGC pentanucleotide sequences in the minimal origin of viral DNA replication (recently reviewed in references 1, 2, 3, 22, and 48). In the presence of Mg-ATP, T antigen assembles cooperatively on the two halves of the palindrome as a double hexamer (10, 11, 13, 24, 30, 38, 51, 53). The DNA conformation flanking the T-antigen binding sites is locally distorted upon hexamer assembly (reference 7 and references therein). One pair of pentanucleotides is sufficient to direct double-hexamer assembly and local distortion of the origin DNA but not to initiate DNA replication (25). ATP hydrolysis by T-antigen hexamers then catalyzes bidirectional unwinding of the parental DNA (reference 53 and references therein). A mutant origin with a single nucleotide insertion in the center of the palindromic T-antigen binding site prevents cooperative interactions between hexamers and cannot support bidirectional origin unwinding (8, 51), suggesting that both processes require interactions between T-antigen hexamers. After assembly of the two replication forks, bidirectional replication is carried out by 10 cellular proteins and T antigen, which remains at the forks as the only essential helicase (reviewed in references 3, 22, and 48).The phosphorylation state of SV40 T antigen governs its ability to initiate viral DNA replication (reviewed in references 15 to 17 and 39). T antigen contains two clusters of phosphorylation sites located at the N and C termini (40, 41). Phosphorylation of T antigen on threonine 124 in the N-terminal cluster was shown to be essential for viral DNA replication in monkey cells and in vitro (5, 14, 3236, 44). Efforts to define what step in viral DNA replication requires modification of threonine 124 revealed that Mg-ATP-induced hexamer formation of T antigen in solution and DNA helicase activity of T antigen did not require phosphorylation at this site (33, 36). Origin DNA binding of T antigen lacking the modification at residue 124 was weaker than that of the modified T antigen (33, 34, 36, 44), but the reduction in binding was modest under the conditions used for SV40 DNA replication in vitro (36). Moreover, a mutant T antigen containing alanine in place of the phosphorylated threonine (T124A) assembled as a double hexamer on the viral origin and altered the conformation of the early palindrome and AT-rich sequences flanking the T-antigen binding sites in the viral origin in the same manner as the wild-type protein, except that higher concentrations were required (36). However, even at an elevated concentration, these mutant double hexamers were unable to unwind closed circular duplex DNA containing the viral origin (33, 36), suggesting that the defect in unwinding was responsible for the inability of T124A T antigen to replicate SV40 DNA. One possible explanation for the unwinding defect of the mutant T antigen, despite its helicase activity, was that some essential interaction between the two hexamers during bidirectional unwinding depended upon phosphorylation of threonine 124. Electron micrographs of SV40 DNA unwinding intermediates, which showed two single-stranded DNA loops protruding between two hexamers of T antigen, provided support for this explanation, implying that a double hexamer pulled the parental duplex DNA into the protein complex and spooled the single-stranded DNA out (53). Furthermore, double-hexamer formation significantly enhanced the helicase activity of T antigen (47, 47a).Most of the T antigen isolated from mammalian cells is in a hyperphosphorylated form, containing multiple phosphoserines, as well as two phosphothreonines, and supports SV40 DNA replication in vitro poorly but can be stimulated by treatment with alkaline phosphatase or protein phosphatase 2A (19, 28, 37, 42, 49, 50). Hyperphosphorylated T antigen is unable to unwind duplex closed circular duplex DNA harboring the viral origin (4, 6, 51). Dephosphorylation of serines 120 and 123 restores its ability to unwind origin DNA (14, 43, 51). Studies of double-hexamer assembly on the origin indicate that phosphorylation of T antigen on serines 120 and 123 also impairs the cooperativity of double-hexamer assembly (14, 51). These results demonstrate that hyperphosphorylation of T antigen interferes with interactions between hexamers that are required for origin unwinding and raise the question of whether the phosphorylation state of threonine 124 might also affect the cooperativity of double-hexamer assembly on the viral origin.One class of T antigen mutants with single-amino-acid substitutions in the DNA binding domain (class 4) has been reported to display properties similar to those of the T124A mutant and the hyperphosphorylated form of T antigen (54). Class 4 mutant proteins are defective in viral DNA replication in vivo and in vitro, bind to the viral origin as double hexamers and alter the local DNA conformation, and have helicase activity but do not unwind closed circular duplex viral DNA. The replication and unwinding defects could be due to faulty phosphorylation patterns or to other malfunctions not dependent on phosphorylation status.The work presented here was undertaken to reevaluate the assembly of wild-type and T124A T antigen on SV40 origin DNA by using more-sensitive quantitative assays and to compare them with the class 4 mutants. We report that cooperativity of T124A T antigen in double-hexamer assembly on the viral origin is impaired. The class 4 mutant T antigens were also found to have defects in cooperativity of double-hexamer assembly. T124A T antigen inhibited the ability of the wild-type protein to unwind closed circular duplex origin DNA. Both T124A and the class 4 mutants displayed dominant-negative phenotypes in viral DNA replication in vitro. Based on these observations, we propose that the N-terminal cluster of phosphorylation sites and the DNA binding domain mediate cooperative hexamer-hexamer interactions during assembly on the viral origin and speculate that these regions of T antigen may interact during origin DNA unwinding.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号