首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In clinical studies, myocardial remodeling in aortic valve stenosis appears to be more favorable in women than in men, even after menopause. In the present study, we assessed whether circulating androgens contribute to a less favorable myocardial remodeling under pressure overload in males. We examined sex-related differences in one-year-old male and female mice. Whereas male mice at this age exhibited circulating androgen levels within the normal range for young adults, the circulating estrogens in females were reduced. The contribution of gonadal androgens to cardiac remodeling was analyzed in a group of same-age castrated mice.

Methodology/Principal Findings

Animals were subjected to transverse aortic constriction (TAC). Echocardiography was performed 2 weeks after TAC and myocardial mRNA levels of TGF-βs, Smads 2 and 3, collagens, fibronectin, β-myosin heavy chain and α-myosin heavy chain were determined by q-PCR. Protein detection of p-SMAD2/3 was performed by Western Blot. Histological staining of fibrosis was performed with picrosirius red and Masson''s trichrome. Compared with females, males developed more severe tissue fibrosis, LV dilation and hemodynamic dysfunction. TAC-males showed higher myocardial expression levels of TGF-βs and the treatment with a neutralizing antibody to TGF-β prevented myocardial fibrosis development. Orchiectomy diminished TAC-induced up-regulation of TGF-βs and TGF-β target genes, and it also reduced fibrosis and hemodynamic dysfunction. The capability of androgens to induce TGF-β expression was confirmed in NIH-3T3 fibroblasts and H9C2 cardiomyocytes exposed to dihydrotestosterone.

Conclusions/Significance

Our results indicate that circulating androgens are responsible for the detrimental effects in the myocardium of older male mice subjected to pressure overload through a mechanism involving TGF-βs.  相似文献   

2.
Tumor necrosis factor-alfa (TNF-α) is a pro-inflammatory cytokine highly-involved in intestinal inflammation. Omega-3 polyunsaturated fatty acids (n3-PUFAs) show anti-inflammatory actions. We previously demonstrated that the n3-PUFA EPA prevents TNF-α inhibition of sugar uptake in Caco-2 cells. Here, we investigated whether the n3-PUFA DHA and its derived specialized pro-resolving lipid mediators (SPMs) MaR1, RvD1 and RvD2, could block TNF-α inhibition of intestinal sugar and glutamine uptake. DHA blocked TNF-α-induced inhibition of α-methyl-D-glucose (αMG) uptake and SGLT1 expression in the apical membrane of Caco-2 cells, through a pathway independent of GPR120. SPMs showed the same preventive effect but acting at concentrations 1000 times lower. In diet-induced obese (DIO) mice, oral gavage of MaR1 reversed the up-regulation of pro-inflammatory cytokines found in intestinal mucosa of these mice. However, MaR1 treatment was not able to counteract the reduced intestinal transport of αMG and SGLT1 expression in the DIO mice. In Caco-2 cells, TNF-α also inhibited glutamine uptake being this inhibition prevented by EPA, DHA and the DHA-derived SPMs. Interestingly, TNF-α increased the expression in the apical membrane of the glutamine transporter B0AT1. This increase was partially blocked by the n-3 PUFAs. These data reveal DHA and its SPMs as promising biomolecules to restore intestinal nutrients transport during intestinal inflammation.  相似文献   

3.
4.
Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid (ω3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of ω3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with ω3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). ω3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with ω3-PUFA prevented H2O2-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.  相似文献   

5.
Isoprostanes (iPs) are prostaglandin-like molecules derived from autoxidation of polyunsaturated fatty acids (PUFAs). Urinary iP levels have been used as indices of in vivo lipid peroxidation. Thus far, it has only been possible to measure iPs derived from arachidonic acid in urine, because levels of iPs/neuroprostanes (nPs) derived from omega 3-PUFAs have been found to be below detection limits of available assays. Because of the interest in omega3-PUFA dietary supplementation, we developed specific methods to measure nPF4 alpha-VI and iPF3 alpha-VI [derived from 4,7,10,13,16,19-docosahexaenoic acid (DHA) and 5,8,11,14,17-eicosapentaenoic acid (EPA)] using a combination of chemical synthesis, gas chromatography/mass spectrometry (GC/MS), and liquid chromatography tandem mass spectrometry (LC/MS/MS). Although nPF4 alpha-VI was below the detection limit of the assay, we conclusively identified iPF3 alpha-VI in human urine by GC/MS and LC/MS/MS. The mean levels in 26 subjects were approximately 300 pg/mg creatinine. Our failure to detect nPF4 alpha-VI may have been due to its rapid metabolism by beta-oxidation to iPF3 alpha-VI, which we showed to occur in rat liver homogenates. In contrast, iPF3 alpha-VI is highly resistant to beta-oxidation in vitro. Thus iPF3 alpha-VI can be formed by two mechanisms: i) direct autoxidation of EPA, and ii) beta-oxidation of nPF4 alpha-VI, formed by autoxidation of DHA. This iP may therefore serve as an excellent marker for the combined in vivo peroxidation of EPA and DHA.  相似文献   

6.
The aim of this study was to investigate macrophage reverse cholesterol transport (RCT) in hamster, a CETP-expressing species, fed omega 3 fatty acids (ω3PUFA) supplemented high fat diet (HFD). Three groups of hamsters (n = 6/group) were studied for 20 weeks: 1) control diet: Control, 2) HFD group: HF and 3) HFD group supplemented with ω3PUFA (EPA and DHA): HFω3. In vivo macrophage-to-feces RCT was assessed after an intraperitoneal injection of 3H-cholesterol-labelled hamster primary macrophages.Compared to Control, HF presented significant (p<0.05) increase in body weight, plasma TG (p<0.01) and cholesterol (p<0.001) with an increase in VLDL TG and in VLDL and LDL cholesterol (p<0.001).Compared to HF, HFω3 presented significant decrease in body weight. HFω3 showed less plasma TG (p<0.001) and cholesterol (p<0.001) related to a decrease in VLDL TG and HDL cholesterol respectively and higher LCAT activity (p<0.05) compared to HF. HFω3 showed a higher fecal bile acid excretion (p<0.05) compared to Control and HF groups and higher fecal cholesterol excretion (p<0.05) compared to HF. This increase was related to higher gene expression of ABCG5, ABCA1 and SR-B1 in HFω3 compared to Control and HF groups (<0.05) and in ABCG1 and CYP7A1 compared to HF group (p<0.05). A higher plasma efflux capacity was also measured in HFω3 using 3H- cholesterol labeled Fu5AH cells.In conclusion, EPA and DHA supplementation improved macrophage to feces reverse cholesterol transport in hamster fed HFD. This change was related to the higher cholesterol and fecal bile acids excretion and to the activation of major genes involved in RCT.  相似文献   

7.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against cardiovascular disease by largely unknown mechanisms. We tested the hypothesis that EPA and DHA may compete with arachidonic acid (AA) for the conversion by cytochrome P450 (CYP) enzymes, resulting in the formation of alternative, physiologically active, metabolites. Renal and hepatic microsomes, as well as various CYP isoforms, displayed equal or elevated activities when metabolizing EPA or DHA instead of AA. CYP2C/2J isoforms converting AA to epoxyeicosatrienoic acids (EETs) preferentially epoxidized the ω-3 double bond and thereby produced 17,18-epoxyeicosatetraenoic (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP) from EPA and DHA. We found that these ω-3 epoxides are highly active as antiarrhythmic agents, suppressing the Ca2+-induced increased rate of spontaneous beating of neonatal rat cardiomyocytes, at low nanomolar concentrations. CYP4A/4F isoforms ω-hydroxylating AA were less regioselective toward EPA and DHA, catalyzing predominantly ω- and ω minus 1 hydroxylation. Rats given dietary EPA/DHA supplementation exhibited substantial replacement of AA by EPA and DHA in membrane phospholipids in plasma, heart, kidney, liver, lung, and pancreas, with less pronounced changes in the brain. The changes in fatty acids were accompanied by concomitant changes in endogenous CYP metabolite profiles (e.g. altering the EET/EEQ/EDP ratio from 87:0:13 to 27:18:55 in the heart). These results demonstrate that CYP enzymes efficiently convert EPA and DHA to novel epoxy and hydroxy metabolites that could mediate some of the beneficial cardiovascular effects of dietary ω-3 fatty acids.  相似文献   

8.
The adhesion receptor β3 integrin regulates diverse cellular functions in various tissues. As β3 integrin has been implicated in extracellular matrix (ECM) remodeling, we sought to explore the role of β3 integrin in cardiac fibrosis by using wild type (WT) and β3 integrin null (β3−/−) mice for in vivo pressure overload (PO) and in vitro primary cardiac fibroblast phenotypic studies. Compared to WT mice, β3−/− mice upon pressure overload hypertrophy for 4 wk by transverse aortic constriction (TAC) showed a substantially reduced accumulation of interstitial fibronectin and collagen. Moreover, pressure overloaded LV from β3−/− mice exhibited reduced levels of both fibroblast proliferation and fibroblast-specific protein-1 (FSP1) expression in early time points of PO. To test if the observed impairment of ECM accumulation in β3−/− mice was due to compromised cardiac fibroblast function, we analyzed primary cardiac fibroblasts from WT and β3−/− mice for adhesion to ECM proteins, cell spreading, proliferation, and migration in response to platelet derived growth factor-BB (PDGF, a growth factor known to promote fibrosis) stimulation. Our results showed that β3−/− cardiac fibroblasts exhibited a significant reduction in cell-matrix adhesion, cell spreading, proliferation and migration. In addition, the activation of PDGF receptor associated tyrosine kinase and non-receptor tyrosine kinase Pyk2, upon PDGF stimulation were impaired in β3−/− cells. Adenoviral expression of a dominant negative form of Pyk2 (Y402F) resulted in reduced accumulation of fibronectin. These results indicate that β3 integrin-mediated Pyk2 signaling in cardiac fibroblasts plays a critical role in PO-induced cardiac fibrosis.  相似文献   

9.
Dietary docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3) are considered important for maintaining normal heart and brain function, but little EPA is found in brain, and EPA cannot be elongated to DHA in rat heart due to the absence of elongase-2. Ingested EPA may have to be converted in the liver to DHA for it to be fully effective in brain and heart, but the rate of conversion is not agreed on. This rate was determined in male adult rats fed a standard n-3 PUFA, containing diet by infusing unesterified albumin-bound [U-13C]EPA intravenously for 2 h and measuring esterified [13C]labeled PUFAs in arterial plasma lipoproteins, as well as the specific activity of unesterified plasma EPA. Whole-body (presumably hepatic) synthesis secretion rates from circulating unesterified EPA, calculated from peak first derivatives of plasma esterified concentration × volume curves, equaled 2.61 μmol/day for docosapentaenoic acid (22:5n-3) and 5.46 μmol/day for DHA. The DHA synthesis rate was 24-fold greater than the reported brain DHA consumption rate in rats. Thus, dietary EPA could help to maintain brain and heart DHA homeostasis because it is converted at a relatively high rate in the liver to circulating DHA.  相似文献   

10.
Omega-3-PUFAs, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are associated with prevention of various aspects of metabolic syndrome. In the present studies, the effects of oil rich in EPA on gene expression and activation of nuclear receptors was examined and compared with other ω3-PUFAs. The EPA-rich oil (EO) altered the expression of FA metabolism genes in THP-1 cells, including stearoyl CoA desaturase (SCD) and FA desaturase-1 and -2 (FASDS1 and -2). Other ω3-PUFAs resulted in a similar gene expression response for a subset of genes involved in lipid metabolism and inflammation. In reporter assays, EO activated human peroxisome proliferator-activated receptor α (PPARα) and PPARβ/γ with minimal effects on PPARγ, liver X receptor, retinoid X receptor, farnesoid X receptor, and retinoid acid receptor γ (RARγ); these effects were similar to that observed for purified EPA. When serum from a 6 week clinical intervention with dietary supplements containing olive oil (control), DHA, or two levels of EPA were applied to THP-1 cells, the expression of SCD and FADS2 decreased in the cells treated with serum from the ω3-PUFA-supplemented individuals. Taken together, these studies indicate regulation of gene expression by EO that is consistent with treating aspects of dyslipidemia and inflammation.  相似文献   

11.

Background

Omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) such as eicosapentaenoic acid (EPA) and docosapentaenoic acid (DHA) are critical for human health and development. Numerous studies have indicated that deficiencies in these fatty acids can increase the risk or severity of cardiovascular, inflammatory and other diseases or disorders. EPA and DHA are predominantly sourced from marine fish although the primary producers are microalgae. Much work has been done to engineer a sustainable land-based source of EPA and DHA to reduce pressure on fish stocks in meeting future demand, with previous studies describing the production of fish oil-like levels of DHA in the model plant species, Arabidopsis thaliana.

Principal Findings

In this study we describe the production of fish oil-like levels (>12%) of DHA in the oilseed crop species Camelina sativa achieving a high ω3/ω6 ratio. The construct previously transformed in Arabidopsis as well as two modified construct versions designed to increase DHA production were used. DHA was found to be stable to at least the T5 generation and the EPA and DHA were found to be predominantly at the sn-1,3 positions of triacylglycerols. Transgenic and parental lines did not have different germination or seedling establishment rates.

Conclusions

DHA can be produced at fish oil-like levels in industrially-relevant oilseed crop species using multi-gene construct designs which are stable over multiple generations. This study has implications for the future of sustainable EPA and DHA production from land-based sources.  相似文献   

12.

Background

Use of the chemotherapeutic drug doxorubicin (DOX) is associated with serious cardiotoxicity, as it increases levels of reactive oxygen species (ROS). N-3 polyunsaturated fatty acid dietary supplements can be of benefit to patients undergoing cancer therapy. The aims of this study were to determine whether DOX-induced cardiotoxicity is related to mitochondrial uncoupling proteins and whether eicosapentaenoic acid (EPA, C20:5 n-3) or docosahexaenoic acid (DHA, C22:6 n-3) affects DOX-induced cardiomyocyte toxicity.

Results

Treatment of H9C2 cells with DOX resulted in decreased cell viability and UCP2 expression. Treatment with 100 μM EPA or 50 μM DHA for 24 h resulted in a maximal mitochondria concentration of these fatty acids and increased UCP2 expression. Pretreatment with 100 μM EPA or 50 μM DHA prevented the DOX-induced decrease in UCP2 mRNA and protein levels, but these effects were not seen with EPA or DHA and DOX cotreatment. In addition, the DOX-induced increase in ROS production and subsequent mitochondrial membrane potential change (∆ψ) were significantly attenuated by pretreatment with EPA or DHA.

Conclusion

EPA or DHA pre-treatment inhibits the DOX-induced decrease in UCP2 expression, increase in ROS production, and subsequent mitochondrial membrane potential change that contribute to the cardiotoxicity of DOX.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0101-3) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) have critical roles in human health and development with studies indicating that deficiencies in these fatty acids can increase the risk or severity of cardiovascular and inflammatory diseases in particular. These fatty acids are predominantly sourced from fish and algal oils, but it is widely recognised that there is an urgent need for an alternative and sustainable source of EPA and DHA. Since the earliest demonstrations of ω3 LC-PUFA engineering there has been good progress in engineering the C20 EPA with seed fatty acid levels similar to that observed in bulk fish oil (∼18%), although undesirable ω6 PUFA levels have also remained high.

Methodology/Principal Findings

The transgenic seed production of the particularly important C22 DHA has been problematic with many attempts resulting in the accumulation of EPA/DPA, but only a few percent of DHA. This study describes the production of up to 15% of the C22 fatty acid DHA in Arabidopsis thaliana seed oil with a high ω3/ω6 ratio. This was achieved using a transgenic pathway to increase the C18 ALA which was then converted to DHA by a microalgal Δ6-desaturase pathway.

Conclusions/Significance

The amount of DHA described in this study exceeds the 12% level at which DHA is generally found in bulk fish oil. This is a breakthrough in the development of sustainable alternative sources of DHA as this technology should be applicable in oilseed crops. One hectare of a Brassica napus crop containing 12% DHA in seed oil would produce as much DHA as approximately 10,000 fish.  相似文献   

14.
Heart failure with preserved ejection fraction (HFpEF) is the most common type of HF in older adults. Although no pharmacological therapy has yet improved survival in HFpEF, exercise training (ExT) has emerged as the most effective intervention to improving functional outcomes in this age‐related disease. The molecular mechanisms by which ExT induces its beneficial effects in HFpEF, however, remain largely unknown. Given the strong association between aging and HFpEF, we hypothesized that ExT might reverse cardiac aging phenotypes that contribute to HFpEF pathophysiology and additionally provide a platform for novel mechanistic and therapeutic discovery. Here, we show that aged (24–30 months) C57BL/6 male mice recapitulate many of the hallmark features of HFpEF, including preserved left ventricular ejection fraction, subclinical systolic dysfunction, diastolic dysfunction, impaired cardiac reserves, exercise intolerance, and pathologic cardiac hypertrophy. Similar to older humans, ExT in old mice improved exercise capacity, diastolic function, and contractile reserves, while reducing pulmonary congestion. Interestingly, RNAseq of explanted hearts showed that ExT did not significantly modulate biological pathways targeted by conventional HF medications. However, it reversed multiple age‐related pathways, including the global downregulation of cell cycle pathways seen in aged hearts, which was associated with increased capillary density, but no effects on cardiac mass or fibrosis. Taken together, these data demonstrate that the aged C57BL/6 male mouse is a valuable model for studying the role of aging biology in HFpEF pathophysiology, and provide a molecular framework for how ExT potentially reverses cardiac aging phenotypes in HFpEF.  相似文献   

15.
Fish oil is recommended for the management of hypertriglyceridemia and to prevent secondary cardiovascular disorders. Fish oil is a major source of ω-3-polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Clinical studies suggest that fish oil not only prevents the incidence of detrimental cardiovascular events, but also lowers the cardiovascular mortality rate. In addition to a classic lipid-lowering action, ω-3-PUFAs in fish oil could regulate blood pressure and enhance vascular integrity and compliance. Additionally, ω-3-PUFAs have the ability to protect vascular endothelial cells by decreasing oxidative stress, halting atherosclerotic events, and preventing vascular inflammatory and adhesion cascades. Intriguingly, recent studies have demonstrated that ω-3-PUFAs improve the function of vascular endothelium by enhancing the generation and bioavailability of endothelium-derived relaxing factor (nitric oxide) through upregulation and activation of endothelial nitric oxide synthase (eNOS). This certainly opens up a new area of research identifying potential mechanisms influencing fish oil-mediated functional regulatory action on vascular endothelium. We address in this review the potential of fish oil to prevent vascular endothelial dysfunction and associated cardiovascular disorders. Moreover, the mechanisms pertaining to fish oil-mediated eNOS activation and nitric oxide generation in improving endothelial function are delineated. We finally suggest the importance of further studies to determine the dose adjustment of fish oil with an optimal ratio of EPA and DHA for achieving consistent cardiovascular protection.  相似文献   

16.
Oxidative stress plays an important role in mediating ventricular remodeling and dysfunction in heart failure (HF), but its mechanism of action has not been fully elucidated. In this study we determined whether a combination of antioxidant vitamins reduced myocyte apoptosis, beta-adrenergic receptor desensitization, and sarcoplasmic reticular (SR) Ca2+ ATPase downregulation in HF after myocardial infarction (MI) and whether these effects were associated with amelioration of left ventricular (LV) remodeling and dysfunction. Vitamins (vitamin C 300 mg and vitamin E 300 mg) were administered to rabbits 1 week after MI or sham operation for 11 weeks. The results showed that MI rabbits exhibited cardiac dilation and LV dysfunction measured by fractional shortening and the maximal rate of pressure rise (dP/dt), an index of contractility. These changes were associated with elevation of oxidative stress, decreases of mitochondrial Bcl-2 and cytochrome c proteins, increases of cytosolic Bax and cytochrome c proteins, caspase 9 and caspase 3 activities and myocyte apoptosis, and downregulation of beta-adrenergic receptor sensitivity and SR Ca2+ ATPase. Combined treatment with vitamins C and E diminished oxidative stress, increased mitochondrial Bcl-2 protein, decreased cytosolic Bax, prevented cytochrome c release from mitochondria to cytosol, reduced caspase 9 and caspase 3 activities and myocyte apoptosis, blocked beta-adrenergic receptor desensitization and SR Ca2+ ATPase downregulation, and attenuated LV dilation and dysfunction in HF after MI. The results suggest that antioxidant therapy may be beneficial in HF.  相似文献   

17.
Abdominal aortic aneurysm (AAA) is a prevalent vascular disease that can progressively enlarge and rupture with a high rate of mortality. Inflammation and active remodeling of the aortic wall have been suggested to be critical in its pathogenesis. Meanwhile, ω-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) are known to reduce cardiovascular events, but its role in AAA management remains unclear. Here, we show that EPA can attenuate murine CaCl2-induced AAA formation. Aortas from BALB/c mice fed an EPA-diet appeared less inflamed, were significantly smaller in diameter compared to those from control-diet-fed mice, and had relative preservation of aortic elastic lamina. Interestingly, CT imaging also revealed markedly reduced calcification of the aortas after EPA treatment. Mechanistically, MMP2, MMP9, and TNFSF11 levels in the aortas were reduced after EPA treatment. Consistent with this finding, RAW264.7 macrophages treated with EPA showed attenuated Mmp9 levels after TNF-α simulation. These results demonstrate a novel role of EPA in attenuating AAA formation via the suppression of critical remodeling pathways in the pathogenesis of AAAs, and raise the possibility of using EPA for AAA prevention in the clinical setting.  相似文献   

18.
19.
The ω6 and ω3 pathways are two major pathways in the biosynthesis of PUFAs. In both of these, delta 6 desaturase (FADS6) is a key bifunctional enzyme desaturating linoleic acid or α-linolenic acid. Microbial species have different propensity for accumulating ω6- or ω3-series PUFAs, which may be determined by the substrate preference of FADS6 enzyme. In the present study, we analyzed the molecular mechanism of FADS6 substrate specificity. FADS6 cDNAs were cloned from Mortierella alpina (ATCC 32222) and Micromonas pusilla (CCMP1545) that synthesized high levels of arachidonic acid and EPA, respectively. M. alpina FADS6 (MaFADS6-I) showed substrate preference for LA; whereas, M. pusilla FADS6 (MpFADS6) preferred ALA. To understand the structural basis of substrate specificity, MaFADS6-I and MpFADS6 sequences were divided into five sections and a domain swapping approach was used to examine the role of each section in substrate preference. Our results showed that sequences between the histidine boxes I and II played a pivotal role in substrate preference. Based on our domain swapping results, nine amino acid (aa) residues were targeted for further analysis by site-directed mutagenesis. G194L, E222S, M227K, and V399I/I400E substitutions interfered with substrate recognition, which suggests that the corresponding aa residues play an important role in this process.  相似文献   

20.
Macrophages play a key role in obesity-induced inflammation. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert anti-inflammatory functions in both humans and animal models, but the exact cellular signals mediating the beneficial effects are not completely understood. We previously found that two nutrient sensors AMP-activated protein kinase (AMPK) and SIRT1 interact to regulate macrophage inflammation. Here we aim to determine whether ω-3 PUFAs antagonize macrophage inflammation via activation of AMPK/SIRT1 pathway. Treatment of ω-3 PUFAs suppresses lipopolysaccharide (LPS)-induced cytokine expression in macrophages. Luciferase reporter assays, electrophoretic mobility shift assays (EMSA) and Chromatin immunoprecipitation (ChIP) assays show that treatment of macrophages with ω-3 PUFAs significantly inhibits LPS-induced NF-κB signaling. Interestingly, DHA also increases expression, phosphorylation and activity of the major isoform α1AMPK, which further leads to SIRT1 over-expression. More importantly, DHA mimics the effect of SIRT1 on deacetylation of the NF-κB subunit p65, and the ability of DHA to deacetylate p65 and inhibit its signaling and downstream cytokine expression require SIRT1. In conclusion, ω-3 PUFAs negatively regulate macrophage inflammation by deacetylating NF-κB, which acts through activation of AMPK/SIRT1 pathway. Our study defines AMPK/SIRT1 as a novel cellular mediator for the anti-inflammatory effects of ω-3 PUFAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号