首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
We have isolated a gene from the protozoan parasite Trypanosoma cruzi that encodes a previously unidentified member of the 70-kilodalton heat shock protein (hsp70) family. Among all the eucaryotic hsp70 proteins described to date, this trypanosome protein, mtp70, is uniquely related in sequence and structure to the hsp70 of Escherichia coli, DnaK, which functions in the initiation of DNA replication. This relationship to DnaK is especially relevant in view of the intracellular location of the protein. Within the trypanosome, mtp70 is located in the mitochondrion, where it associates with kinetoplast DNA (kDNA), the unusual mitochondrial DNA that distinguishes this order of protozoa. Moreover, mtp70 is located in the specific region of the kinetoplast in which kDNA replication occurs. In view of the known functions of DnaK, the localization of mtp70 to the site of kDNA replication suggests that mtp70 may participate in eucaryotic mitochondrial DNA replication in a manner analogous to that of DnaK in E. coli.  相似文献   

2.
The Brucella ovis dnaK gene, homolog to the eukaryotic hsp70 genes, was cloned by using a Drosophila melanogaster probe. Comparison of B. ovis and Escherichia coli sequences revealed a similar organization for the dnaK and dnaJ genes and putative regulatory signals. In E. coli transfected with the cloned fragment, B. ovis hsp70 was expressed at 30 and 50 degrees C apparently under the control of its own promoter. The recombinant protein and a B. ovis native protein displaying the same molecular weight were both recognized by anti-E. coli DnaK serum. Native B. ovis protein was also recognized by sera of sheep either infected or vaccinated with an attenuated Brucella strain, suggesting that Brucella hsp70 could be up-regulated during host colonization. A thermosensitive E. coli dnaK mutant transfected with the cloned fragment recovered colony-forming ability at 42 degrees C, showing that the B. ovis DnaK protein could behave as a functional heat shock protein in E. coli.  相似文献   

3.
4.
In the present study we have cloned from sponges (Porifera) those molecules which are involved in the protection of organisms against physiological and stress conditions; the inducible heat shock protein Mr 70,000, hsp70, from the marine sponge Geodia cydonium , its interacting hsp40, a DnaJ-like protein (from G. cydonium ) and the constitutively expressed counterpart the glucose-regulated protein Mr 78,000, GRP78 from Suberites domuncula . Alignments of the sequences revealed that the deduced aa sequences of all sponge hsp's share high homology to other metazoan sequences, and are separated from related sequences from plants and fungi (hsp70, GRP78, DnaJ) as well as Bacteria (DnaK, the hsp70 homologoue and the DnaJ) and Archaea (DnaK, the hsp70 homologoue and the DnaJ). One comparison based on nt sequences (hsp70/DnaK) showed a less pronounced grouping. From these data we conclude, that for phylogenetic analyses of deep branches in the metazoan evolution, not only 'characteristic'metazoan genes, but also 'housekeeping genes'e.g. are suitable for evolutionary inference.
The sequences reported here have been submitted to the EMBL/GenBank data base (accession no. GCDNAJ Y09037, GCHSP70 X94985, SDGR78 Y09500).  相似文献   

5.
We have reported that the hsp70 chaperone DnaK from Escherichia coli might assist protein folding by catalyzing the cis/trans isomerization of secondary amide peptide bonds in unfolded or partially folded proteins. In this study a series of fatty acylated benzamido inhibitors of the cis/trans isomerase activity of DnaK was developed and tested for antibacterial effects in E. coli MC4100 cells. N(alpha)-[Tetradecanoyl-(4-aminomethylbenzoyl)]-l-asparagine is the most effective antibacterial with a minimal inhibitory concentration of 100 +/- 20 microg/ml. The compounds were shown to compete with fluorophore-labeled sigma(32)-derived peptide for the peptide binding site of DnaK and to increase the fraction of aggregated proteins in heat-shocked bacteria. Despite its inability to serve as a folding helper in vivo a DnaK-inhibitor complex was still able to sequester an unfolded protein in vitro. Structure activity relationships revealed a distinct dependence of DnaK-assisted refolding of luciferase on the fatty acyl chain length, whereas the minimal inhibitory concentration was most sensitive to the structural nature of the benzamido core. We conclude that the isomerase activity of DnaK is a major survival factor in the heat shock response of bacteria and that small molecule inhibitors can lead to functional inactivation of DnaK and thus will display antibacterial activity.  相似文献   

6.
7.
The Hsp70 molecular chaperone machine is constituted by the 70-kDa heat shock protein Hsp70 (DnaK), cochaperone protein Hsp40 (DnaJ) and a nucleotide-exchange factor GrpE. Although it is one of the best-characterized molecular chaperone machines, little is known about it in archaea. A 5.2-kb region containing the hsp70 (dnaK) gene was cloned from Natrinema sp. J7 strain and sequenced. It contained the Hsp70 chaperone machine gene locus arranged unidirectionally in the order of grpE, hsp70 and hsp40 (dnaJ). The hsp70 gene from Natrinema sp. J7 was overexpressed in Escherichia coli BL21 (DE3). The recombinant Hsp70 protein was in a soluble and active form, and its ATPase activity was optimally active in 2.0 M KCl, whereas NaCl had less effect. In vivo, the haloarchaeal hsp70 gene allowed an E. coli dnak-null mutant to propagate lambda phages and grow at 42 degrees C. The results suggested that haloarchaeal Hsp70 should be beneficial for extreme halophiles survival in low-salt environments.  相似文献   

8.
Eukaryotic organisms respond to various stresses with the synthesis of heat shock proteins (HSPs). HSP110 is a large molecular mass HSP that is part of the HSP70/DnaK superfamily. In this study, we have examined, for the first time, the expression of the hsp110 gene in Xenopus laevis cultured cells and embryos. Sequence analysis revealed that the protein encoded by the hsp110 cDNA exhibited 74% identity with its counterparts in mammals and only 27-29% with members of the Xenopus HSP70 family. Hsp110 mRNA and/or protein was detected constitutively in A6 kidney epithelial cells and was inducible by heat shock, sodium arsenite, and cadmium chloride. However, treatment with ethanol or copper sulfate had no detectable effect on hsp110 mRNA levels. Similar results were obtained for hsp70 mRNA except that it was inducible with ethanol. In Xenopus embryos, hsp110 mRNA was present constitutively during development. Heat shock-inducible accumulation of hsp110 mRNA occurred only after the midblastula stage. Whole mount in situ hybridization analysis revealed that hsp110 mRNA accumulation in control and heat shocked embryos was enriched in selected tissues. These studies demonstrate that Xenopus hsp110 gene expression is constitutive and stress inducible in cultured cells and developmentally- and tissue specifically-regulated during early embryogenesis.  相似文献   

9.
SSC1 is an essential member of the yeast HSP70 multigene family (E. Craig, J. Kramer, and J. Kosic-Smithers, Proc. Natl. Acad. Sci. USA 84:4156-4160, 1987). Analysis of the SSC1 DNA sequence revealed that it could encode a 70,627-dalton protein that is more similar to DnaK, an Escherichia coli hsp70 protein, than other yeast hsp70s whose sequences have been determined. Ssc1p was found to have an amino-terminal extension of 28 amino acids, in comparison with either Ssa1p, another hsp70 yeast protein, or Dnak. This putative leader is rich in basic and hydroxyl amino acids, characteristic of many mitochondrial leader sequences. Ssc1p that was synthesized in vitro could be imported into mitochondria and was cleaved in the process. The imported protein comigrated with an abundant mitochondrial protein that reacted with hsp70-specific antibodies. We conclude that Ssc1p is a mitochondrial protein and that hsp70 proteins perform functions in many compartments of the cell.  相似文献   

10.
Molecular chaperones of the heat shock protein 70 family (Hsp70; also called DnaK in prokaryotes) play an important role in the folding and functioning of cellular protein machinery. The dnaK gene from the plant pathogen Agrobacterium tumefaciens RUOR was amplified using the polymerase chain reaction and the DnaK protein (Agt DnaK) was over-produced as a His-tagged protein in Escherichia coli. The Agt DnaK amino acid sequence was 96% identical to the A. tumefaciens C58 DnaK sequence and 65% identical to the E. coli DnaK sequence. Agt DnaK was shown to be able to functionally replace E. coli DnaK in vivo using complementation assays with an E. coli dnaK756 mutant strain and a dnaK52 deletion strain. Over-production and purification of Agt DnaK was successful, and allowed for further characterization of the protein. Kinetic analysis of the basal ATPase activity of purified Agt DnaK revealed a Vmax of 1.3 nmol phosphate released per minute per milligram DnaK, and a Km of 62 microM ATP. Thus, this is the first study to provide both in vivo and in vitro evidence that Agt DnaK has the properties of a molecular chaperone of the Hsp70 family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号