首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Rationale

Our previous studies demonstrated that bone morphogenetic protein 4 (BMP4) mediated, elevated expression of canonical transient receptor potential (TRPC) largely accounts for the enhanced proliferation in pulmonary arterial smooth muscle cells (PASMCs). In the present study, we sought to determine the signaling pathway through which BMP4 up-regulates TRPC expression.

Methods

We employed recombinant human BMP4 (rhBMP4) to determine the effects of BMP4 on NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS) production in rat distal PASMCs. We also designed small interfering RNA targeting NOX4 (siNOX4) and detected whether NOX4 knockdown affects rhBMP4-induced ROS, TRPC1 and 6 expression, cell proliferation and intracellular Ca2+ determination in PASMCs.

Results

In rhBMP4 treated rat distal PASMCs, NOX4 expression was (226.73±11.13) %, and the mean ROS level was (123.65±1.62) % of that in untreated control cell. siNOX4 transfection significantly reduced rhBMP4-induced elevation of the mean ROS level in PASMCs. Moreover, siNOX4 transfection markedly reduced rhBMP4-induced elevation of TRPC1 and 6 proteins, basal [Ca2+]i and SOCE. Furthermore, compared with control group (0.21±0.001), the proliferation of rhBMP4 treated cells was significantly enhanced (0.41±0.001) (P<0.01). However, such increase was attenuated by knockdown of NOX4. Moreover, external ROS (H2O2 100 µM, 24 h) rescued the effects of NOX4 knockdown, which included the declining of TRPC1 and 6 expression, basal intracellular calcium concentration ([Ca2+]i) and store-operated calcium entry (SOCE), suggesting that NOX4 plays as an important mediator in BMP4-induced proliferation and intracellular calcium homeostasis.

Conclusion

These results suggest that BMP4 may increase ROS level, enhance TRPC1 and 6 expression and proliferation by up-regulating NOX4 expression in PASMCs.  相似文献   

2.
Both TRPC6 and reactive oxygen species (ROS) play an important role in regulating vascular function. However, their interplay has not been explored. The present study examined whether activation of TRPC6 in vascular smooth muscle cells (VSMCs) by ROS was a physiological mechanism for regulating vascular tone by vasoconstrictors. In A7r5 cells, arginine vasopressin (AVP) evoked a striking Ca2+ entry response that was significantly attenuated by either knocking down TRPC6 using siRNA or inhibition of NADPH oxidases with apocynin or diphenyleneiodonium. Inhibition of TRPC6 or ROS production also decreased AVP-stimulated membrane currents. In primary cultured aortic VSMCs, catalase and diphenyleneiodonium significantly suppressed AVP- and angiotensin II-induced whole cell currents and Ca2+ entry, respectively. In freshly isolated and endothelium-denuded thoracic aortas, hyperforin (an activator of TRPC6), but not its vehicle, induced dose- and time-dependent constriction in TRPC6 wide type (WT) mice. This response was not observed in TRPC6 knock-out (KO) mice. Consistent with the ex vivo study, hyperforin stimulated a robust Ca2+ entry in the aortic VSMCs from WT mice but not from KO mice. Phenylephrine induced a dose-dependent contraction of WT aortic segments, and this response was inhibited by catalase. Moreover, H2O2 itself evoked Ca2+ influx and inward currents in A7r5 cells, and these responses were significantly attenuated by either inhibition of TRPC6 or blocking vesicle trafficking. H2O2 also induced inward currents in primary VSMCs from WT but not from TRPC6 KO mice. Additionally, H2O2 stimulated a dose-dependent constriction of the aortas from WT mice but not from the vessels of KO mice. Furthermore, TIRFM showed that H2O2 triggered membrane trafficking of TRPC6 in A7r5 cells. These results suggest a new signaling pathway of ROS-TRPC6 in controlling vessel contraction by vasoconstrictors.  相似文献   

3.
Cytosolic-free Ca2 + plays a crucial role in blood platelet function and is essential for thrombosis and hemostasis. Therefore, cytosolic-free Ca2 + concentration is tightly regulated in this cell. TRPC6 is expressed in platelets, and an important role for this Ca2 + channel in Ca2 + homeostasis has been reported in other cell types. The aim of this work is to study the function of TRPC6 in platelet Ca2 + homeostasis. The absence of TRPC6 resulted in an 18.73% decreased basal [Ca2 +]c in resting platelets as compared to control cells. Further analysis confirmed a similar Ca2 + accumulation in wild-type and TRPC6-deficient mice; however, passive Ca2 + leak rates from agonist-sensitive intracellular stores were significantly decreased in TRPC6-deficient platelets. Biotinylation studies indicated the presence of an intracellular TRPC6 population, and subcellular fractionation indicated their presence on endoplasmic reticulum membranes. Moreover, the presence of intracellular calcium release in platelets stimulated with 1-oleoyl-2-acetyl-sn-glycerol further suggested a functional TRPC6 population located on the intracellular membranes surrounding calcium stores. However, coimmunoprecipitation assay confirmed the absence of STIM1–TRPC6 interactions in resting conditions. This findings together with the absence of extracellular Mn2 + entry in resting wild-type platelets indicate that the plasma membrane TRPC6 fraction does not play a significant role in the maintenance of basal [Ca2 +]c in mouse platelets. Our results suggest an active participation of the intracellular TRPC6 fraction as a regulator of basal [Ca2 +]c, controlling the passive Ca2 + leak rate from agonist-sensitive intracellular Ca2 + stores in resting platelets.  相似文献   

4.
Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating JNK to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca2+]i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca2+]i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.  相似文献   

5.
Mutations in the cation channel TRPC6 result in a renal-specific phenotype of familial nephrotic syndrome, affecting intracellular calcium ([Ca2+]i) signalling in the glomerular podocyte. Tools to study native TRPC6 activity are scarce, although there has been recent success with flufenamic acid (FFA). We confirm the specificity of FFA for TRPC6 both in an artificial expression system and in a human conditionally immortalised podocyte cell line (ciPod).Cells were loaded with fura-2AM and changes in intracellular calcium ([Ca2+]i) were calculated. 200 μM FFA induced an increase in [Ca2+]i in HEK293 cells with native TRPC6 expression, which was enhanced by overexpression of TRPC6 and completely blocked in the absence of extracellular calcium. Expressed TRPC7 did not significantly affect the response to FFA whereas expressed TRPC3 reduced it. FFA also induced an increase ciPod in [Ca2+]i, which was inhibited using SKF96365 and 2-APB, but not indomethacin. In ciPod, adenovirus (Ad-v) wild type (WT) TRPC6 increased [Ca2+]i activity to FFA compared to native TRPC6, whereas activity was significantly reduced with Ad-v dominant negative (DN) TRPC6. The niflumic acid (NFA) induced increase in [Ca2+]i in ciPod was not affected by Ad-v TRPC6 DN, and in HEK293 cells was not affected by WT TRPC6.In conclusion, FFA activates TRPC6 [Ca2+]i signalling in both ciPod and HEK293 cells independently of TRPC3 and TRPC7, and independently of properties of the fenamate family.  相似文献   

6.
Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01–2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47phox expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47phox, and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47phox in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47phox was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.  相似文献   

7.
The soluble urokinase receptor (suPAR) has been implicated in the pathogenesis of chronic kidney diseases (CKD) and may function as a circulating “permeability factor” driving primary focal and segmental glomerulosclerosis (FSGS). Here we examined the mechanisms whereby suPAR causes mobilization and increased activation of Ca2+-permeable TRPC6 channels, which are also implicated in FSGS. Treatment of immortalized mouse podocytes with recombinant suPAR for 24?h caused a marked increase in cytosolic reactive oxygen species (ROS) that required signaling through integrins. This effect was associated with increased assembly of active cell surface NADPH oxidase 2 (Nox2) complexes and was blocked by the Nox2 inhibitor apoycynin. Treatment with suPAR also evoked a functionally measurable increase in TRPC6 channels that was blocked by concurrent treatment with the ROS-quencher TEMPOL as well as by inhibition of Rac1, an essential component of active Nox2 complexes. Elevated ROS evoked by exposing cells to suPAR or H2O2 caused a marked increase in the abundance of tyrosine-phosphorylated proteins including Src, and suPAR-evoked Src activation was blocked by TEMPOL. Moreover, mobilization and increased activation of TRPC6 by suPAR or H2O2 was blocked by concurrent exposure to PP2, an inhibitor of Src family tyrosine kinases. These data suggest that suPAR induces oxidative stress in podocytes that in turn drives signaling through Src family kinases to upregulate TRPC6 channels. The combination of oxidative stress and altered Ca2+ signaling may contribute to loss of podocytes and progression of various forms of CKD.  相似文献   

8.
We have investigated the molecular basis of intracellular Ca2+ handling in human colon carcinoma cells (HT29) versus normal human mucosa cells (NCM460) and its contribution to cancer features. We found that Ca2+ stores in colon carcinoma cells are partially depleted relative to normal cells. However, resting Ca2+ levels, agonist-induced Ca2+ increases, store-operated Ca2+ entry (SOCE), and store-operated currents (ISOC) are largely enhanced in tumor cells. Enhanced SOCE and depleted Ca2+ stores correlate with increased cell proliferation, invasion, and survival characteristic of tumor cells. Normal mucosa cells displayed small, inward Ca2+ release-activated Ca2+ currents (ICRAC) mediated by ORAI1. In contrast, colon carcinoma cells showed mixed currents composed of enhanced ICRAC plus a nonselective ISOC mediated by TRPC1. Tumor cells display increased expression of TRPC1, ORAI1, ORAI2, ORAI3, and STIM1. In contrast, STIM2 protein was nearly depleted in tumor cells. Silencing data suggest that enhanced ORAI1 and TRPC1 contribute to enhanced SOCE and differential store-operated currents in tumor cells, whereas ORAI2 and -3 are seemingly less important. In addition, STIM2 knockdown decreases SOCE and Ca2+ store content in normal cells while promoting apoptosis resistance. These data suggest that loss of STIM2 may underlie Ca2+ store depletion and apoptosis resistance in tumor cells. We conclude that a reciprocal shift in TRPC1 and STIM2 contributes to Ca2+ remodeling and tumor features in colon cancer.  相似文献   

9.
The transient receptor potential (TRPC) family of Ca2 + permeable, non-selective cation channels is abundantly expressed in the brain, and can function as store-operated (SOC) and store-independent channels depending on their interaction with the ER Ca2 + sensor STIM1. TRPC1 and TRPC5 have critical roles in neurite outgrowth, however which of their functions regulate neurite outgrowth is unknown. In this study, we investigated the effects of TRPC channels and their STIM1-induced SOC activity on neurite outgrowth of PC12 cells. We report that PC12 cell differentiation down-regulates TRPC5 expression, whereas TRPC1 expression is retained. TRPC1 and TRPC5 interact with STIM1 through the STIM1 ERM domain. Transfection of TRPC1 and TRPC5 increased the receptor-activated Ca2 + influx that was markedly augmented by the co-expression of STIM1. Topical expression of TRPC1 in PC12 cells markedly increased neurite outgrowth while that of TRPC5 suppressed neurite outgrowth. Suppression of neurite outgrowth by TRPC5 requires the channel function of TRPC5. However, strikingly, multiple lines of evidence show that the TRPC1-induced neurite outgrowth was independent of TRPC1-mediated Ca2 + influx. Thus, a) TRPC1 and TRPC5 similarly increased Ca2 + influx but only TRPC1 induced neurite outgrowth, b) the constitutively STIM1D76A mutant that activates Ca2 + influx by TRPC and Orai channels did not increase neurite outgrowth, c) co-expression of TRPC5 with TRPC1 suppressed the effect of TRPC1 on neurite outgrowth, d) and most notable, channel-dead pore mutant of TRPC1 increased neurite outgrowth to the same extent as TRPC1WT. Suppression of TRPC1-induced neurite outgrowth by TRPC5 was due to a marked reduction in the surface expression of TRPC1. We conclude that the regulation of neurite outgrowth by TRPC1 is independent of Ca2 + influx and TRPC1-promoted neurite outgrowth depends on the surface expression of TRPC1. It is likely that TRPC1 acts as a scaffold at the cell surface to assemble a signaling complex to stimulate neurite outgrowth.  相似文献   

10.
Panaxydol, a polyacetylenic compound derived from Panax ginseng roots, has been shown to inhibit the growth of cancer cells. In this study, we demonstrated that panaxydol induced apoptosis preferentially in transformed cells with a minimal effect on non-transformed cells. Furthermore, panaxydol was shown to induce apoptosis through an increase in intracellular Ca2+ concentration ([Ca2+]i), activation of JNK and p38 MAPK, and generation of reactive oxygen species (ROS) initially by NADPH oxidase and then by mitochondria. Panaxydol-induced apoptosis was caspase-dependent and occurred through a mitochondrial pathway. ROS generation by NADPH oxidase was critical for panaxydol-induced apoptosis. Mitochondrial ROS production was also required, however, it appeared to be secondary to the ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the membrane translocation of regulatory p47phox and p67phox subunits and shown to be necessary for ROS generation by panaxydol treatment. Panaxydol triggered a rapid and sustained increase of [Ca2+]i, which resulted in activation of JNK and p38 MAPK. JNK and p38 MAPK play a key role in activation of NADPH oxidase, since inhibition of their expression or activity abrogated membrane translocation of p47phox and p67phox subunits and ROS generation. In summary, these data indicate that panaxydol induces apoptosis preferentially in cancer cells, and the signaling mechanisms involve a [Ca2+]i increase, JNK and p38 MAPK activation, and ROS generation through NADPH oxidase and mitochondria.  相似文献   

11.
The canonical transient receptor potential (TRPC) channels are Ca2+-permeable cationic channels controlling the Ca2+ influx evoked by G protein-coupled receptor activation and/or by Ca2+ store depletion. Here we investigate the involvement of TRPCs in the cell differentiation of lung cancer. The expression of TRPCs and the correlation to cancer differentiation grade in non-small cell lung cancer (NSCLC) were analyzed by real-time PCR and immunostaining using tissue microarrays from 28 patient lung cancer samples. The association of TRPCs with cell differentiation was also investigated in the lung cancer cell line A549 by PCR and Western blotting. The channel activity was monitored by Ca2+ imaging and patch recording after treatment with all-trans-retinoic acid (ATRA). The expression of TRPC1, 3, 4 and 6 was correlated to the differentiation grade of NSCLC in patients, but there was no correlation to age, sex, smoking history and lung cancer cell type. ATRA upregulated TRPC3, TRPC4 and TRPC6 expression and enhanced Ca2+ influx in A549 cells, however, ATRA showed no direct effect on TRPC channels. Inhibition of TRPC channels by pore-blocking antibodies decreased the cell mitosis, which was counteracted by chronic treatment with ATRA. Blockade of TRPC channels inhibited A549 cell proliferation, while overexpression of TRPCs increased the proliferation. We conclude that TRPC expression correlates to lung cancer differentiation. TRPCs mediate the pharmacological effect of ATRA and play important roles in regulating lung cancer cell differentiation and proliferation, which gives a new understanding of lung cancer biology and potential anti-cancer therapy.  相似文献   

12.
Renal cell carcinoma (RCC) is the most common tumor arising from the cells in the lining of tubules in the kidney. Some members of the Ca2+-permeable transient receptor potential canonical (TRPC) family of channel proteins have demonstrated a role in the proliferation of some types of cancer cells. In this study, we investigated the role of TRPC6 in the development of human RCC. RT-PCR and Western blotting were used to investigate TRPC6 expression in 1932 and ACHN cells. Immunohistochemical techniques were applied to study TRPC6 expression in 60 cases of RCC primary tissue samples and 10 cases of corresponding normal renal tissues. To inhibit TRPC6 activity or expression, RNA interference was used. The effects of TRPC6 channels on RCC cell viability and cell cycle progression were investigated by MTT and flow cytometry. TRPC6 was expressed in 1932 and ACHN cells. TRPC6 protein was detected in 73.3 % of RCC samples, and there was a significant difference compared with the normal renal samples (30 %) (p < 0.05). Moreover the level of TRPC6 expression was associated with RCC Fuhrman grade (p < 0.01). Blockade of TRPC6 channels in ACHN cells suppressed basal cell proliferation and partially inhibited HGF-induced cell proliferation. Furthermore, inhibition of TRPC6 channels expression prolonged the transition through G2/M phase in ACHN cells. In summary, expression of TRPC6 is markedly increased in RCC specimens and associated with RCC histological grade. TRPC6 plays an important role in ACHN cells proliferation.  相似文献   

13.
Cigarette smoke contributes to or exacerbates airway diseases such as asthma and COPD, where airway hyperresponsiveness and airway smooth muscle (ASM) proliferation are key features. While factors such as inflammation contribute to asthma in part by enhancing agonist-induced intracellular Ca2+ ([Ca2+]i) responses of ASM, the mechanisms by which cigarette smoke affect ASM are still under investigation. In the present study, we tested the hypothesis that cigarette smoke enhances the expression and function of Ca2+ regulatory proteins leading to increased store operated Ca2+ entry (SOCE) and cell proliferation. Using isolated human ASM (hASM) cells, incubated in the presence and absence cigarette smoke extract (CSE) we determined ([Ca2+]i) responses and expression of relevant proteins as well as ASM proliferation, reactive oxidant species (ROS) and cytokine generation. CSE enhanced [Ca2+]i responses to agonist and SOCE: effects mediated by increased expression of TRPC3, CD38, STIM1, and/or Orai1, evident by attenuation of CSE effects when siRNAs against these proteins were used, particularly Orai1. CSE also increased hASM ROS generation and cytokine secretion. In addition, we found in the airways of patients with long-term smoking history, TRPC3 and CD38 expression were significantly increased compared to life-long never-smokers, supporting the role of these proteins in smoking effects. Finally, CSE enhanced hASM proliferation, an effect confirmed by upregulation of PCNA and Cyclin E. These results support a critical role for Ca2+ regulatory proteins and enhanced SOCE to alter airway structure and function in smoking-related airway disease.  相似文献   

14.
Chen S  He FF  Wang H  Fang Z  Shao N  Tian XJ  Liu JS  Zhu ZH  Wang YM  Wang S  Huang K  Zhang C 《Cell calcium》2011,50(6):523-529
Albumin, which is the most abundant component of urine proteins, exerts injurious effects on renal cells in chronic kidney diseases. However, the toxicity of albumin to podocytes is not well elucidated. Here, we show that a high concentration of albumin triggers intracellular calcium ([Ca2+]i) increase through mechanisms involving the intracellular calcium store release and extracellular calcium influx in conditionally immortalized podocytes. The canonical transient receptor potential-6 (TRPC6) channel, which is associated with a subset of familial forms of focal segmental glomerulosclerosis (FSGS) and several acquired proteinuric kidney diseases, was shown to be one of the important Ca2+ permeable ion channels in podocytes. Therefore we explored the role of TRPC6 on albumin-induced functional and structural changes in podocytes. It was found that albumin-induced increase in [Ca2+]i was blocked by TRPC6 siRNA or SKF-96365, a blocker of TRP cation channels. Long-term albumin exposure caused an up-regulation of TRPC6 expression in podocytes, which was inhibited by TRPC6 siRNA. Additionally, the inhibition of TRPC6 prevented the F-actin cytoskeleton disruption that is induced by albumin overload. Moreover, albumin overload induced expression of the endoplasmic reticulum (ER) stress protein GRP78, led to caspase-12 activation and ultimately podocyte apoptosis, all of which were abolished by the knockdown of TRPC6 using TRPC6 siRNA. These results support the view that albumin overload may induce ER stress and the subsequent apoptosis in podocytes via TRPC6-mediated Ca2+ entry.  相似文献   

15.
Myeloperoxidase (MPO) is an important enzyme involved in the genesis and development of atherosclerosis. Vascular peroxidase 1 (VPO1) is a newly discovered member of the peroxidase family that is mainly expressed in vascular endothelial cells and smooth muscle cells and has structural characteristics and biological activity similar to those of MPO. Our specific aims were to explore the effects of VPO1 on endothelial cell apoptosis induced by oxidized low-density lipoprotein (ox-LDL) and the underlying mechanisms. The results showed that ox-LDL induced endothelial cell apoptosis and the expression of VPO1 in endothelial cells in a concentration- and time-dependent manner concomitant with increased intracellular reactive oxygen species (ROS) and hypochlorous acid (HOCl) generation, and up-regulated protein expression of the NADPH oxidase gp91phox subunit and phosphorylation of p38 MAPK. All these effects of ox-LDL were inhibited by VPO1 gene silencing and NADPH oxidase gp91phox subunit gene silencing or by pretreatment with the NADPH oxidase inhibitor apocynin or diphenyliodonium. The p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor DEVD-CHO significantly inhibited ox-LDL-induced endothelial cell apoptosis, but had no effect on intracellular ROS and HOCl generation or the expression of NADPH oxidase gp91phox subunit or VPO1. Collectively, these findings suggest for the first time that VPO1 plays a critical role in ox-LDL-induced endothelial cell apoptosis and that there is a positive feedback loop between VPO1/HOCl and the now-accepted dogma that the NADPH oxidase/ROS/p38 MAPK/caspase-3 pathway is involved in ox-LDL-induced endothelial cell apoptosis.  相似文献   

16.
TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells.  相似文献   

17.
Apocynin has been extensively used as an inhibitor of NADPH oxidase (NOX) in many experimental models using phagocytic and non-phagocytic cells. Currently, there is some controversy about the efficacy of apocynin in non-phagocytic cells, but in phagocytes the reported results are consistent, which could be due to the presence of myeloperoxidase in these cells. This enzyme has been proposed as responsible for activating apocynin by generating its dimer, diapocynin, which is supposed to be the active compound that prevents NADPH oxidase complex assembly and activation.Here, we synthesized diapocynin and studied its effect on inhibition of gp91phox RNA expression. We found that diapocynin strongly inhibited the expression of gp91phoxmRNA in peripheral blood mononuclear cells (PBMC). Only at a higher concentration, apocynin was able to exert the same effect. We also compared the apocynin and diapocynin efficacy as inhibitors of tumor necrosis factor-alpha (TNF-α) and interleukin-10 (IL-10) production in response to lipopolysaccharide (LPS)-activated PBMC. Although apocynin did inhibit TNF-α production, diapocynin had a much more pronounced effect, on both TNF-α and IL-10 production. In conclusion, these findings suggest that the bioconversion of apocynin to diapocynin is an important issue not limited to enzymatic activity inhibition, but also for other biological effects as gp91phox mRNA expression and cytokine production. Hence, as diapocynin can be easily prepared from apocynin, a one-step synthesis, we recommend its use in studies where the biological effects of apocynin are searched.  相似文献   

18.
19.
The canonical transient receptor potential 6 gene, TRPC6, has been implicated as a putative risk gene for chemotherapy-induced congestive heart failure, but knowledge of specific risk variants is lacking. Following our genome-wide association study and subsequent fine-mapping, a rare missense mutant of TRPC6 N338S, was identified in a breast cancer patient who received anthracycline-containing chemotherapy regiments and developed congestive heart failure. However, the function of N338S mutant has not been examined. Using intracellular Ca2+ imaging, patch clamp recording and molecular docking techniques, we assessed the function of N338S mutant heterologously expressed in HEK293 cells and HL-1 cardiac cells. We found that expression of TRPC6 N338S significantly increased intracellular Ca2+ levels ([Ca2+]i) and current densities in response to 50 μM 1-oleoyl 2-acetyl-sn-glycerol (OAG), an activator of TRPC6 channels, compared to those of TRPC6 WT. A 24-h pretreatment with 0.5 μM doxorubicin (DOX) further potentiated the OAG effects on TRPC6 N338S current densities and [Ca2+]i, and these effects were abolished by 1 μM BI-749327, a highly selective TRPC6 inhibitor. Moreover, DOX treatment significantly upregulated the mRNA and protein expressions of TRPC6 N338S, compared to those of TRPC6 WT. Molecular docking and dynamics simulation showed that OAG binds to the pocket constituted by the pore-helix, S5 and S6 domains of TRPC6. However, the N338S mutation strengthened the interaction with OAG, therefore stabilizing the OAG-TRPC6 N338S complex and enhancing OAG binding affinity. Our results indicate that TRPC6 N338S is a gain-of-function mutant that may contribute to DOX-induced cardiotoxicity by increasing Ca2+ influx and [Ca2+]i in cardiomyocytes.  相似文献   

20.
Heme oxygenase-1 (HO-1) is known as an oxidative stress protein that is up-regulated by various stimuli. HO-1 has been shown to protect cells against oxidative damage. Cigarette smoke is a potential inflammatory mediator that causes chronic obstructive pulmonary disease and asthma. In this study, we report that cigarette smoke particle-phase extract (CSPE) is an inducer of HO-1 expression mediated through various signaling pathways in human tracheal smooth muscle cells (HTSMCs). CSPE-induced HO-1 protein, mRNA expression, and promoter activity were attenuated by pretreatment with a ROS scavenger (N-acetyl-l-cysteine) and inhibitors of c-Src (PP1), NADPH oxidase [diphenylene iodonium chloride (DPI) and apocynin (APO)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNAs for Src, p47phox, NOX2, p42, p38, JNK2, or NF-E2-related factor 2 (Nrf2). CSPE-stimulated translocation of p47phox and Nrf2, ROS production, and NADPH oxidase activity was attenuated by transfection with siRNAs for Src, p47phox, and NOX2 or pretreatment with PP1, DPI, or APO. Furthermore, CSPE-induced NOX2, c-Src, and p47phox complex formation was revealed by immunoprecipitation using an anti-NOX2, anti-p47phox, or anti-c-Src Ab followed by Western blot against anti-NOX2, anti-p47phox, or anti-c-Src Abs. These results demonstrate that CSPE-induced ROS generation is mediated through a c-Src/NADPH oxidase/MAPK pathway and in turn initiates the activation of Nrf2 and ultimately induces HO-1 expression in HTSMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号