首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 583 毫秒
1.
2.
The effects of the transforming growth factor beta (TGF-beta) on the growth and glycosaminoglycan synthesis of rabbit growth plate-chondrocytes in culture were studied. In serum-free medium, TGF-beta caused dose-dependent inhibition of DNA synthesis by chondrocytes, measured as [3H]thymidine incorporation (ED50 = 0.1-0.3 ng/ml). The inhibitory effect was maximal at a dose of 1 ng/ml, and extended for a duration of 16-42 h. In contrast, TGF-beta potentiated the synthesis of DNA stimulated by fetal calf serum (FCS). Addition of TGF-beta (1 ng/ml) to cultures containing 10% FCS increased [3H]thymidine incorporation to 1.6-times that in cultures with 10% FCS alone. Consistent with this finding, TGF-beta potentiated DNA synthesis stimulated by the purified growth factors such as platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factor (FGF). The maximal stimulation of DNA synthesis by FGF (0.4 ng/ml) was further potentiated dose dependently by TGF-beta (ED50 = 0.1 ng/ml, maximum at 1 ng/ml). When the cultures were treated with the optimal concentrations of TGF-beta (1 ng/ml) and FGF (0.4 ng/ml), [3H]thymidine incorporation was 3-times higher than that of cultures treated with FGF alone. This TGF-beta-induced potentiation of DNA synthesis was associated with replication of chondrocytes, as shown by a marked increase in the amount of DNA during treatment of sparse cultures of the cells with the growth factors for 5 days. In contrast, TGF-beta caused dose-dependent stimulation of glycosaminoglycan synthesis in confluent cultures of growth-plate chondrocytes (ED50 = 0.3 ng/ml, maximum at 1 ng/ml). This stimulatory effect of TGF-beta was greater than that of insulin-like growth factor I (IGF-I) or PDGF. Furthermore, TGF-beta stimulated glycosaminoglycan synthesis additively with IGF-I or PDGF. Recently, it has been suggested that bone and articular cartilage are rich sources of TGF-beta, whereas epiphyseal growth cartilage is not. Thus, the present data indicate that TGF-beta may be important in bone formation by modulating growth and phenotypic expression of chondrocytes in the growth plate, possibly via a paracrine mechanism.  相似文献   

3.
Effects of epidermal growth factor (EGF) on the development of mouse 2-cell embryos cultured in vitro were investigated. The addition of EGF at a concentration of 0.5 ng/ml enhanced the development of 2-cell embryos during 24 h of incubation. As expected, EGF stimulated the synthesis of DNA in the 2-cell embryos about 4-fold over the control. The growth-promoting effect of EGF seemed to be specific in that other growth factors, such as transforming growth factor-alpha (TGF-alpha), transforming growth factor-beta (TGF-beta), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor (PDGF), nerve growth factor (NGF) and fibroblast growth factor (FGF) had no effect on the embryonal development. The addition of EGF also increased the rate of RNA synthesis in a dose-related manner between 0.1 and 50 ng/ml. However, protein synthesis was unaffected by EGF. These results raise the possibility that EGF may participate in the process of early embryogenesis in vivo.  相似文献   

4.
5.
The synthesis of complement components in human fibroblasts is modulated by mediators of inflammation such as cytokines. In particular, interleukin-1 (IL-1) and tumor necrosis factor (TNF) induce time- and dose-dependent increases in the synthesis of complement proteins factor B (FB), C3, and factor H (FH). Polypeptide growth factors are also soluble mediators released during inflammation and able to modulate many fibroblast functions. We have studied the effects of polypeptide growth factors platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and fibroblast growth factor (FGF) on the synthesis of complement proteins in cultured human fibroblasts. PDGF, EGF, and FGF alone did not affect the level of synthesis of any of the complement proteins analyzed, but simultaneous incubation of PDGF, EGF, or FGF with IL-1 and TNF resulted in a dose-dependent inhibition of the cytokine-enhanced expression of FB. Inhibition of FB synthesis was observed between 4 and 8 h of exposure to PDGF and persisted for 4 h after the removal of the growth factor. Analysis of steady-state levels of specific FB mRNA suggested that PDGF-induced inhibition of FB synthesis is mediated at a pretranslational level and that it requires new protein synthesis. The effect of the growth factors was limited to FB, with marginal or no inhibition on the cytokine-enhanced synthesis of C3 and FH, excluding the possibility that the inhibitory effects of PDGF, EGF, and FGF on FB synthesis were due to a negative modulation of the growth factors on cytokine cell membrane receptors. Specific inhibition of cytokine-induced increases in FB synthesis by the growth factors may represent down regulation of the acute inflammatory process, further permitting progression to processes of tissue repair and remodeling. Study of the interactions between cytokines and growth factors in the regulation of synthesis of complement proteins may also provide a system for investigating mechanisms of signal transduction of both polypeptide growth factors and cytokines.  相似文献   

6.
Ascorbic acid has been shown to stimulate collagen synthesis in monolayer cultures of human dermal fibroblasts. In the present studies, we examined whether the presence of a collagen matrix influences this response of dermal fibroblasts to ascorbic acid. Fibroblasts and collagen were mixed and allowed to gel and contract for 6 days to form a matrix prior to determining the concentration and time dependence for ascorbic acid to affect collagen synthesis by fibroblasts within the matrix. Collagen synthesis was stimulated at levels at or above 10 μM ascorbic acid and was maximal after 2 days of treatment. This concentration and time dependence is similar to that of cells grown in monolayer cultures. The effects of transforming growth factor-β (TGF-β) and fibroblast growth factor (FGF) were also examined in this model. TGF-β increased and FGF inhibited collagen synthesis in the gels, as has been shown for cells in monolayer cultures. The effects of potential inhibitors of lipid peroxidation induced by ascorbic acid were also examined in these matrices and compared to previous results obtained in monolayer cultures. Propyl gallate, cobalt chloride, α,α-dipyridyl, and α-tocopherol inhibited the ascorbic acid-mediated stimulation of collagen synthesis while mannitol had no effect. Natural retinoids inhibited total protein synthesis without the specific effect on collagen synthesis that was seen in monolayer cultures. These results indicate that ascorbic acid stimulates collagen synthesis in fibroblasts grown in a collagen matrix in a manner similar to that found in monolayer cultures. In contracting collagen gels, however, the magnitude of the effect is less and retinoids do not specifically inhibit collagen synthesis.  相似文献   

7.
8.
9.
Monolayer cultures of human mesothelial cells made quiescent by serum deprivation are induced to undergo one round of DNA synthesis by platelet-derived growth factor (PDGF), epidermal growth factor (EGF), or transforming growth factor type beta 1 (TGF-beta 1). This one-time stimulation is independent of other serum components. The kinetics for induction of DNA synthesis observed for PDGF, EGF, and TGF-beta 1 are all similar to one another, with a peak of DNA synthesis occurring 24-36 h after the addition of the growth factors. Repetitive rounds of DNA synthesis and cell division do not ensue after addition of PDGF, EGF, or TGF-beta 1 alone or in combination; however, in media supplemented with chemically denatured serum, each of these factors is capable of sustaining continuous replication of mesothelial cells. Stimulation of growth by PDGF and TGF-beta 1 is unusual for an epithelial cell type, and indicates that mesothelial cells have growth regulatory properties similar to connective tissue cells.  相似文献   

10.
The growth of MG63 human osteosarcoma cell line in 5% serum is stimulated by epidermal growth factor (EGF), platelet-derived growth factor (PDGF), or heparin-binding growth factor-1 (HBGF-1). The mitogenic effect of EGF and PDGF is completely blocked by TFG-beta at 1 ng per ml and the effect of HBGF-1 is attenuated by 75-80%. Treatment of MG63 cells with TGF-beta reduces HBGF-1 receptor binding affinity from 1.24 x 10(-11) M to 3.51 x 10(-11) M with no change on the receptor number (1.1 x 10(3) per cell). The receptor-binding affinity of EGF and PDGF is not altered by TGF-beta treatment; however, the number of EGF receptor is increased by 25%. Both EGF and PDGF stimulate MG63 cellular tyrosine kinase activity, and such stimulation is inhibited by TGF-beta pretreatment. No change in the cellular protein tyrosine phosphorylation pattern can be detected in HBGF-1-stimulated cells with and without TGF-beta pretreatment. These data suggest that TGF-beta inhibits EGF and PDGF mitogenicity by blocking EGF- and PDGF-stimulated tyrosine kinase activity and attenuates HBGF-1 mitogenicity by decreasing its receptor affinity.  相似文献   

11.
12.
Transforming growth factor-beta (TGF beta 1), a multipotent immunoregulatory peptide produced by human platelets, has been shown to stimulate the synthesis of fibrinogen, contrapsin, complement component C3, and alpha-1-proteinase inhibitor by murine hepatocytes cultured for 2 days in DMEM containing 1 microM insulin and dexamethasone and 0.2% BSA. In the range of 10 pg to 10 ng/ml TGF-beta 1 did not elicit any change in albumin secretion. Two main inflammatory cytokines: interleukin-6 (IL-6) and interleukin-1 (IL-1), known to stimulate two different subsets of murine acute phase plasma proteins, failed to increase contrapsin and alpha-1-proteinase inhibitor production. Epidermal growth factor (EGF) in the concentration 1 ng to 10 ng/ml effectively counteracted the stimulatory effect of TGF-beta 1 on acute phase protein production. TGF-beta 1-induced fibrinogen protein levels were associated with increased beta-fibrinogen mRNA content. TGF-beta 1 appears to be an additional physiological factor responsible for the direct stimulation of normal mouse hepatocytes to acute phase response.  相似文献   

13.
We have recently demonstrated the formation of interconnecting canalicular cell processes in bone cells upon contact with basement membrane components. Here we have determined whether growth factors in the reconstituted basement membrane (Matrigel) were active in influencing the cellular network formation. Various growth factors including transforming growth factor beta (TGF-beta), epidermal growth factor (EGF), insulin-like growth factor 1, bovine fibroblast growth factor (bFGF), and platelet-derived growth factor (PDGF) were identified in Matrigel. Exogenous TGF-beta blocked the cellular network formation. Conversely, addition of TGF-beta 1 neutralizing antibodies to Matrigel stimulated the cellular network formation. bFGF, EGF, and PDGF all promoted cellular migration and organization on Matrigel. Addition of bFGF to MC3T3-E1 cells grown on Matrigel overcame the inhibitory effect of TGF-beta. Some TGF-beta remained bound to type IV collagen purified from the Engelbreth-Holm-Swarm tumor matrix. These data demonstrate that reconstituted basement membrane contains growth factors which influence cellular behavior, suggesting caution in the interpretation of experiments on cellular activity related to Matrigel, collagen type IV, and possibly other extracellular matrix components.  相似文献   

14.
Growth factors and cytokines play an important role in tissue development and repair. However, it remains unknown how they act on proliferation and differentiation of periodontal ligament cells. In this study, we investigated the effects of several growth factors and cytokines on the synthesis of DNA, alkaline phosphatase (ALPase), fibronectin, and secreted protein acidic and rich in cysteine (SPARC) in human periodontal ligament (HPL) cells. Transforming growth factor-beta (TGF-beta) increased the synthesis of DNA, fibronectin and SPARC, whereas it decreased ALPase activity. Basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF) and tumor necrosis factor-alpha (TNF-alpha) decreased SPARC and ALPase levels, whereas these peptides increased DNA synthesis and did not affect fibronectin synthesis. Epidermal growth factor (EGF) up-regulated the synthesis of DNA and fibronectin and inhibited SPARC and ALPase levels. Interleukin-1beta (IL-1beta) decreased the synthesis of DNA, ALPase, fibronectin and SPARC. These findings demonstrate that TGF-beta, bFGF, EGF, PDGF, TNF-alpha and IL-1beta have characteristically different patterns of action on DNA, SPARC, fibronectin and ALPase synthesis by HPL cells. The differences in regulation of function of periodontal ligament cells by these peptides may be involved in the regeneration and repair of periodontal tissue.  相似文献   

15.
Transforming growth factor-beta (TGF-beta) autoregulates its expression in several mammalian cell types. We now report that addition of TGF-beta s 1, 2, and 3 to primary chicken embryo cells differentially affects expression of the messenger RNAs for the different TGF-beta isoforms depending on the cell type. In cultured sternal chondrocytes, addition of TGF-beta s 1, 2, or 3 results in an increase in the steady-state levels of the messenger RNAs for TGF-beta s 2 and 3, but does not change expression of TGF-beta 4 mRNA. In contrast, in cultured cardiac myocytes, addition of TGF-beta s 1, 2, or 3 results in an increase in expression of TGF-beta s 3 and 4 mRNAs, but does not change expression of TGF-beta 2 mRNA. Moreover, expression of TGF-beta s 2, 3, and 4 mRNAs is not affected by addition of any of the TGF-beta s to fibroblasts. Addition of platelet-derived growth factor (PDGF), epidermal growth factor (EGF), or interleukin-1 (IL-1) to these chicken cells also has differential effects on expression of the different TGF-beta mRNAs depending on the cell type. Retinoic acid also has contrasting effects on chondrocytes and myocytes either increasing or decreasing, respectively, expression of TGF-beta s 2 and 3 mRNAs and TGF-beta 2 protein. Our results indicate a complex pattern of regulation of the different TGF-beta genes by themselves as well as by PDGF, EGF, IL-1, dexamethasone, TPA, and retinoic acid in chicken embryo cells.  相似文献   

16.
Transforming growth factor-beta (TGF-beta) stimulates DNA synthesis in human foreskin fibroblasts after a prolonged lag period as compared with other growth factors. The mechanism of induction of DNA synthesis appears to be dependent on the synthesis and secretion of PDGF-related proteins as antibodies which are specific for PDGF can block the TGF-beta-induced DNA synthesis. Other growth factors such as PDGF, EGF, or FGF do not induce the synthesis of these PDGF-related proteins. Additionally, TGF-beta treatment of human foreskin fibroblasts induces the expression of the PDGF A-chain gene but not the B-chain gene. This phenomenon appears to function in vivo, as subcutaneous injection of TGF-beta in rat skin induces the expression of the PDGF A-chain gene. These data suggest that TGF-beta may stimulate the growth of fibroblastic cells via an autocrine production of PDGF-related proteins.  相似文献   

17.
Our studies show that in connective tissue cells, induction of PGE2 synthesis in response to IL-1 requires costimulation with platelet-derived growth factor (PDGF) or fibroblast growth factor (FGF). In cells incubated in medium containing fresh serum, IL-1 induced a dose-dependent synthesis of PGE2. However, when the cells were incubated in medium containing low serum or platelet poor plasma (lacking PDGF), IL-1 alone failed to induce PGE2 synthesis. PGE2 synthesis was restored when platelet poor plasma was supplemented with PDGF. Addition of PDGF or FGF together with IL-1 resulted in a 14- and 66-fold stimulation of PGE2 synthesis, respectively. Stimulation was dependent on the concentration of both IL-1 and the growth factor. PGE2 synthesis was also dependent on the synthesis of new proteins. In cells simultaneously treated with IL-1 and PDGF, PGE2 synthesis was initiated after a lag of 2 to 3 h, proceeded first with a rapid rate for 6 h, and then with a slower rate through 24 h. PGE2 synthesis during the latter, slower phase was greatly enhanced by pretreatment with PDGF, but not by pretreatment with IL-1. PDGF pretreatment also resulted in maintenance of 10- to 12-fold higher cell surface IL-1-binding during this phase. These data provide evidence for potentially novel interactions between PDGF and IL-1 activities, one of which is the modulation of IL-1 receptors by PDGF. Furthermore, these studies suggest that by virtue of their effect on IL-1 activities, PDGF and FGF may play additional roles in connective tissues, including an indirect role in inflammatory processes.  相似文献   

18.
19.
Growth factors may play an important role in regulating the growth of the proximal tubule epithelium. To determine which growth factors could be involved, we have investigated the mitogenicity of various purified factors in rat kidney proximal tubule epithelial (RPTE) cells cultured in defined medium. Fibroblast growth factors, aFGF (acidic FGF) and bFGF (basic FGF), stimulate DNA synthesis in a dose-dependent manner, with ED50 values of 4.5 and 3.2 ng/ml, respectively; their effects are not additive. With cholera toxin in the medium, both aFGF and bFGF can replace insulin or epidermal growth factor (EGF) to attain the maximum level of cell growth, but they cannot replace cholera toxin. Cholera toxin specifically potentiates the effects of FGFs on DNA synthesis. At high cell density, both insulin and insulin-like growth factor 1 (IGF-1) induce DNA synthesis more effectively than EGF, FGFs and cholera toxin. The high concentration (0.2-1.0 microgram/ml) of insulin required for cell growth can be replaced by a low concentration of IGF-1 (10-20 ng/ml), indicating that insulin probably acts through a low affinity interaction with the IGF-1 receptor. Transforming growth factor-beta 1 (TGF-beta 1) inhibits DNA synthesis induced by individual factors and combinations of factors in a concentration-dependent manner. Northern blot analysis shows that mRNA for TGF-beta 1, IGF-1, and aFGF, but not bFGF are present in rat kidney. Western blot analysis and bioassay data confirmed that the majority of FGF-like protein in rat kidney is aFGF. The data suggest that in addition to EGF, IGFs, and TGF-beta, FGFs may also be important kidney-derived regulators of proximal tubule epithelial cell growth in vivo and in vitro.  相似文献   

20.
Activated fibroblast growth factor receptor 1 (FGFR1) propagates FGF signals through multiple intracellular pathways via intermediates FRS2, PLCgamma, and Ras. Conflicting reports exist concerning the interaction between FGFR1 and Src family kinases. To address the role of c-Src in FGFR1 signaling, we compared proliferative responses of murine embryonic fibroblasts (MEF) deficient in c-Src, Yes, and Fyn to MEF expressing either endogenous levels or overexpressing c-Src. MEF with endogenous c-Src had significantly greater FGF-induced DNA synthesis and proliferation than cells lacking or overexpressing c-Src. This was related directly to c-Src expression by analysis of c-Src-deficient cells transfected with and sorted for varying levels of a c-Src expression vector. This suggests an "optimal" quantity of c-Src expression for FGF-induced proliferation. To determine if this was a general phenomenon for growth factor signaling pathways utilizing c-Src, responses to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and lysophosphatidic acid (LPA) were examined. As for FGF, responses to EGF were clearly inhibited when c-Src was absent or overexpressed. In contrast, varying levels of c-Src had little effect on responses to PDGF or LPA. The data show that mitogenic pathways activated by FGF-1 and EGF are regulated by c-Src protein levels and appear to differ significantly from those activated by PDGF and LPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号