首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The nature of the proteinases which are secreted by barley aleurone layers in response to gibberellic acid was studied by constructing pH vs. activity curves for the hydrolysis of gelatin by incubation media and aleurone layer extracts. The results indicate that the aleurone layers release several different proteinases. The main component is a labile sulphydryl enzyme with an optimum pH of 3.9. The other enzymes include two sulphydryl proteinases with pH optima between pH 5 and 6.5 and a metal-activated enzyme active at pH 7.0. No differences could be demonstrated between the proteinases released by and retained in the aleurone layers.  相似文献   

2.
A novel enzyme, the first metalloproteinase purified from a monocotyledonous plant, was extracted from the endosperm of sorghum seedlings and purified to homogeneity by ion exchange chromatography and size exclusion chromatography. SDS-PAGE analysis reveals a dimeric 17-kDa protein with two 8-kDa subunits linked by disulfide bond(s). The enzyme is 97% inhibited by 1 mM EDTA and is unaffected by inhibitors of aspartic, cysteine, and serine proteinases. Its pH optimum is 7.0 with hemoglobin as substrate.  相似文献   

3.
Methods were developed to determine proteinase activity in germinating seeds of Scots pine. The assays were based on the liberation of TCA-soluble peptides from haemoglobin at pH 3.7 and from casein at pH 5.4 and pH 7.0; the reaction products were determined by the Lowry method. — Endosperms separated from seeds at the time of rapid storage protein mobilization (seedling length between 20 and 50 mm) showed high proteinase activities in all three assays. Experiments with different inhibitors suggested that at least four enzymes were involved. One of the enzymes resembled mammalian and microbial pepsin-like acid proteinases: the pH optimum was 3.7 and the enzyme was inhibited by pepstatin.—The proteinase activities in the endosperms were high enough to account for the mobilization of the reserve proteins during germination. Moreover the activities at pH 3.7.5.4. and 7.0 in the endosperms were 10-, 25-, and 50-fold the corresponding activities in the growing seedlings (a “reference” tissue). Consequently, it seems that both the acid and neutral proteinases take part in the mobilization of storage proteins in the germinating seed.  相似文献   

4.
N S Reading  S D Aust 《Biochemistry》2001,40(27):8161-8168
Phanerochaete chrysosporium manganese peroxidase (MnP) [isoenzyme H4] was engineered with additional disulfide bonds to provide structural reinforcement to the proximal and distal calcium-binding sites. This rational protein engineering investigated the effects of multiple disulfide bonds on the stabilization of the enzyme heme environment and oxidase activity. Stabilization of the heme environment was monitored by UV-visible spectroscopy based on the electronic state of the alkaline transition species of ferric and ferrous enzyme. The optical spectral data confirm an alkaline transition to hexacoordinate, low-spin heme species for native and wild-type MnP and show that the location of the engineered disulfide bonds in the protein can have significant effects on the electronic state of the enzyme. The addition of a single disulfide bond in the distal region of MnP resulted in an enzyme that maintained a pentacoordinate, high-spin heme at pH 9.0, whereas MnP with multiple engineered disulfide bonds did not exhibit an increase in stability of the pentacoordinate, high-spin state of the enzyme at alkaline pH. The mutant enzymes were assessed for increased stability by incubation at high pH. In comparison to wild-type MnP, enzymes containing engineered disulfide bonds in the distal and proximal regions of the protein retained greater levels of activity when restored to physiological pH. Additionally, when assayed for oxidase activity at pH 9.0, proteins containing engineered disulfide bonds exhibited slower rates of inactivation than wild-type MnP.  相似文献   

5.
1. A species comparison was conducted on the proteolytic activity in human, dog, rabbit, guinea-pig and rat kidney which can degrade human myelin basic protein peptide 43-88. 2. In rat kidney the degrading activity occurred over a pH range of 4-11.5 with the greatest activities at pH 5 and 9. The peptide degrading activity in human, dog, rabbit and guinea-pig kidney was considerably less than in the rat and occurred predominantly at pH 7 with lesser activity at pH 9. 3. The effects of inhibitors of proteolytic enzymes indicated that the peptide degrading activities at the same two pH's of dog, rabbit and guinea-pig were similar to one another but differed from that of human. 4. These results indicate that the activity for degrading a potential autoantigenic material is widespread in renal tissue among different species and that different enzymes are involved. More generally, these findings suggest that renal proteinases differ among commonly used laboratory animals and also differ from the human enzymes.  相似文献   

6.
A new method for isolation of leukocyte serine proteinases has been developed. Elastase (EC 3.4.21.37) and cathepsin G (EC 3.4.21.20) have been isolated from dog neutrophils and purified to homogeneous state. The results of inhibitor analysis indicate that the enzymes belong to the group of serine proteinases. Some physical and chemical characteristics of the purified enzymes have been determined. The molecular weights of the enzymes are 24.5-26 kD for the elastase and 23.5-25.5 kD for the cathepsin G. The cathepsin G is a glycoprotein, while the elastase molecule lacks carbohydrate components. The cathepsin G exhibits a broad pH optimum of catalytic activity in the range of 7.0-9.0; the pH optimum for the elastase is 8.0-8.5. The Michaelis constant of the elastase for N-t-Boc-L-alanine p-nitrophenyl ester is 0.10 mM; the Michaelis constant of the cathepsin G for N-benzoyl-L-tyrosine ethyl ester is 0.42 mM.  相似文献   

7.
A method of preparing rat liver mitochondria with low residual contamination by lysosomal proteases is described. Preparations of mitochondria are divided into two equal portions, one of which is supplemented with a lysosomal fraction. The addition of the lysosomal fraction causes an increase in proteolysis of between 26- and 56-fold at pH 5.0 in four similar experiments. This increase matches the increase in the lysosomal marker beta-glucuronidase and indicates that all proteolysis at pH 5.0 is due to enzymes of the lysosomal fraction. Above pH 7.0, the addition of a lysosomal supplement increases proteolysis by 1.5- to 5-fold only, suggesting that in the absence of a lysosomal supplement very little of the observed proteolysis is due to enzymes of lysosomal origin. A method of calculating the contribution to total proteolysis of enzymes of the lysosomal fraction or of the mitochondrial fraction is described. The calculations show that at pH 7.0 and above, more than 93% of the observed proteolysis is due to enzymes originating in the mitochondrial fraction. The results support the view of other workers that rat liver mitochondria contain an endogenous neutral proteolytic system capable of degrading mitochondrial proteins to acid-soluble products.  相似文献   

8.
A simple method was developed for the controlled cleavage of protein disulfide bonds and the simultaneous blockage of the free sulfhydryl groups in the absence of a denaturant. The disulfide bonds of bovine serum albumin were cleaved unsymmetrically at pH 7.0 using 0.1 M sulfite in 0.1 M phosphate buffer and the free sulfhydryl groups formed were sulfonated in an oxidation-reduction cycle using molecular oxygen and 400 microM cupric sulfate as a catalyst. The reaction was affected by cupric ion concentration, sulfite concentration, reaction pH and temperature. The standardized method was successfully used to cleave the disulfide bonds of other proteins pepsin, trypsin, and chymotrypsin. The method is reliable and can be used for achieving progressive cleavage of disulfide bonds in proteins without employing a denaturant.  相似文献   

9.
Bifidobacterium adolescentis 94-BIM was found to produce cell-wall bound proteolytic enzymes active at acidic, neutral, and alkaline pH values. The solubilization of proteinases with 0.5% Triton X-100 substantially improved the yield of the enzymes. The most active accumulation of cell-bound proteinases was observed in the third hour of cultivation at rates of 156.7, 179.5, and 111.1 U/(mg h), measured at pH 2.5, 7.0, and 9.0, respectively. It is suggested that the cell-wall bound proteinases of B. adolescentis 94-BIM are the precursors of the enzymes secreted into the medium.  相似文献   

10.
Strongyloides ransomi: proteolytic enzymes from larvae   总被引:2,自引:0,他引:2  
The filariform larvae of Strongyloides ransomi can infect their hosts by penetration through skin. In this report, homogenates of these organisms were prepared and their proteolytic enzymes examined. Homogenates prepared in 0.2 M citrate, pH 4.0, contain two thiol-dependent proteinases with molecular weights of approximately 32,000 and 28,000. These proteinases have an acidic pH optimum and show substrate preferences and inhibitor susceptibilities similar to the vertebrate acidic cysteinyl proteinases. Homogenates prepared in 0.1 M Tris, pH 7.5, contain multiple proteolytic enzymes, active against both Azocoll and synthetic substrates. These enzymes do not require thiols for activity and they have an alkaline pH optimum. The enzymes are inhibited by both chelating agents and heavy metals, but not by serine-proteinase inhibitors. Extracts prepared in 0.1 M Tris-HCl, pH 7.5, contain endogenous proteinase inhibitors.  相似文献   

11.
探索获得优良的新型普鲁兰酶基因,丰富普鲁兰酶理论,对实现普鲁兰酶国产化具有重要意义。分析GenBank数据库中蜡样芽胞杆菌假定Ⅰ型、Ⅱ型普鲁兰酶基因序列,从实验室保藏的蜡样芽胞杆菌Bacilluscereus GXBC-3中克隆得到3个普鲁兰酶基因pulA、pulB、pulC,并分别导入大肠杆菌进行胞内诱导表达。纯化重组酶酶学性质研究表明重组酶PulA能水解α-l,6-和α-l,4-糖苷键,为Ⅱ型普鲁兰酶,以普鲁兰糖为底物时,最适反应温度及pH分别为40℃和6.5,比活力为32.89 U/mg;以可溶性淀粉为底物时,最适反应温度及pH分别为50℃和7.0,比活力为25.71 U/mg。重组酶PulB和PulC二者均只能水解α-l,6-糖苷键,为I型普鲁兰酶,以普鲁兰糖为底物时,其最适反应温度及pH分别为45℃、7.0和45℃、6.5,比活力分别为228.54 U/mg和229.65 U/mg。  相似文献   

12.
Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity.  相似文献   

13.
A keratinolytic strain of S. fradiae has been shown to synthesize a complex of extracellular proteinases degrading native keratin proteins, elastin and collagen as well as some globular proteins. These enzymes are characterized by basic optimal pH and are inactivated by pheynlmethylsulfonyl fluoride (PMSF). Using preparative polyacrylamide gel electrophoresis, ion-exchange chromatography and affinity chromatography, 6 fractions of active protein of diversified proteolytic activity have been distinguished in the preparation studied.  相似文献   

14.
C1-inhibitor is a member of the serpin family of proteinase inhibitors and is an important inhibitor of complement and contact system proteinases. The native protein has the characteristic serpin feature of being in a kinetically trapped metastable state rather than in the most stable state it could adopt. A consequence of this is that it readily forms loop-sheet dimers and polymers, by a mechanism believed to be the same as observed with other serpins. An unusual feature of C1-inhibitor is that it has a unique amino-terminal domain, of unknown function, held to the serpin domain by two disulfide bonds not found in other serpins. We report here that reduction of these bonds by DTT, causes a conformational change such that the reactive center loop inserts into beta-sheet A. This form of C1-inhibitor is less stable to heat and urea than the native protein, and is more susceptible to extensive degradation by trypsin. These data show that the disulfide bonds in C1-inhibitor are required for the protein to be stabilized in the metastable state with the reactive center loop expelled from beta-sheet A.  相似文献   

15.
The metal chelator-sensitive proteinase activity from the larvae of the webbing clothes moth, Tineola bisselliella, was fractionated into two components by chromatography on DEAE-cellulose and the properties of the major fraction investigated. The approximate molecular weight obtained by gel filtration was 24 000. The pH optimum of 9.4 and the high stability between pH 9.0 and 11.5 are consistent with the alkaline conditions known to be present in the larval mid-gut. The enzyme also showed a second region of high stability around pH 2.3. The cleavage specificity against S-carboxy-methyl A and B chains of insulin was quite different to that of the metal chelator-sensitive proteinases from snake venoms and microorganisms. 10 bonds in the A-chain and 8 bonds in the B-chain were cleaved and the tentative rules governing the specificity limitations of this metal-chelator-sensitive proteinase are discussed.  相似文献   

16.
Samartsev  A. A.  Astapovich  N. I.  Novik  G. I. 《Microbiology》2000,69(6):655-658
Bifidobacterium adolescentis 94-BIM was found to produce cell-wall-bound proteolytic enzymes active at acidic, neutral, and alkaline pH values. The solubilization of proteinases with 0.5% Triton X-100 substantially improved the yield of the enzymes. The most active accumulation of cell-bound proteinases was observed in the third hour of cultivation at rates of 156.7, 179.5, and 111.1 U/(mg h), measured at pH 2.5, 7.0, and 9.0, respectively. It is suggested that the cell-wall-bound proteinases of B. adolescentis 94-BIM are the precursors of the enzymes secreted into the medium.  相似文献   

17.
Helicobacter pylori cysteine-rich proteins (Hcps) are disulfide-containing repeat proteins. The repeating unit is a 36-residue, disulfide-bridged, helix-loop-helix motif. We use the protein HcpB, which has four repeats and four disulfide bridges arrayed in tandem, as a model to determine the thermodynamic stability of a disulfide-rich repeat protein and to study the formation and the contribution to stability of the disulfide bonds. When the disulfide bonds are intact, the chemical unfolding of HcpB at pH 5 is cooperative and can be described by a two-state reaction. Thermal unfolding is reversible between pH 2 and 5 and irreversible at higher pH 5. Differential scanning calorimetry shows noncooperative structural changes preceding the main thermal unfolding transition. Unfolding of the oxidized protein is not an all-or-none two-state process, and the disulfide bonds prevent complete unfolding of the polypeptide chain. The reduced protein is significantly less stable and does not unfold in a cooperative way. During oxidative refolding of the fully reduced protein, all the possible disulfide intermediates with a correct disulfide bond are formed. Formation of "wrong" (non-native) disulfide bonds could not be demonstrated, indicating that the reduced protein already has some partial repeating structure. There is a major folding intermediate with disulfides in the second, third, and fourth repeat and reduced cysteines in the first repeat. Disulfide formation in the first repeat limits the overall rate of oxidative refolding and contributes about half of the thermodynamic stability to native HcpB, estimated as 27 kJ mol(-1) at 25 degrees C and pH 7. The high contribution to stability of the first repeat may be explained by the repeat acting as a cap to protect the hydrophobic interior of the molecule.  相似文献   

18.
Seven proteinases were isolated from the fruit of snake-gourd, Trichosanthes cucumeroides Maxim. Their isozymes are all serine proteinases, and homologous in their respective molecular weights, amino acid compositions, and enzymatic properties. Their molecular weight was estimated to be about 50,000. Using casein as a substrate, the maximum activity was found in the alkaline pH region. The optimum temperature using casein was 70 degrees C at pH 7.3. The enzymes were strongly inhibited by diisopropyl fluorophosphate and not inhibited by inhibitors of sulfhydryl or metalloproteases. The reduced and S-carboxymethylated insulin B-chain was used as a substrate in an investigation of the specificity. The enzyme was found to have a wide specificity for this substrate but preferentially hydrolyzed the peptide bonds involving the carboxyl groups of charged amino acid such as S-cm-cysteine, glutamic acid, histidine, arginine, and lysine. Experimental evidence indicated that the snake-gourd proteinases are similar in their properties to cucumisin, which is isolated from the sarcocarp of melon fruit.  相似文献   

19.
Human tissue extracts contained two high Mr proteinases active in hydrolyzing the fluorogenic substrate Cbz-phe-arg-aminomethylcoumarin. By gel filtration chromatography, cathepsins J and K had apparent molecular weights of 230,000 and 650,000, respectively. Both enzymes were cysteine proteinases with optimum activity at pH 6.2-6.8; neither had aminopeptidase activity. Human kidney, lung and spleen were rich sources of these enzymes, while liver contained moderate amounts. Cathepsins J and K were partially characterized and appeared to differ from the mammalian high Mr cysteine proteinases described in the literature. In rat liver and kidney and in mouse liver, cathepsin J was localized in the particulate fraction, whereas cathepsin K was not detected in these tissues.  相似文献   

20.
We studied the dependence of activity and stability of proteolytic enzymes in salmon roe on pH and temperature. The activity of proteolytic enzymes in roe was primarily determined by proteinases. These enzymes were active at acid pH and had an optimum of 3.6. A study of subclasses of proteolytic enzymes in salmon roe and the published data suggest that the activity of proteinases may be related to the presence of aspartyl proteinases (cathepsin D). Serine proteinases and metalloenzymes were not found in roe. The activity of cysteine proteinases was low. The proposed conditions of pasteurization favored the complete inactivation of salmon roe at pH 6.0-6.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号