首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
The freshwater microalga, Chlamydomonas reinhardtii Dangeard, was cultured under 350 and 700 ppmv CO2 to determine the impact of doubled atmospheric CO2 concentration on its growth and photosynthesis. No significant difference was observed in the specific growth rate, photosynthetic efficiency, maximal net photo‐synthetic rate and light‐saturating point between the low and high CO2 cultures. Both the low‐ and high‐CO2‐grown cells showed reduced light‐dependent O2 evolution rate and photochemical efficiency (Fv/Fm) owing to photoinhibition when exposed to high photon flux density. However, high‐CO2‐grown cells were less photoinhibited, and showed better recovery in dim light or darkness during the initial period of the recovery process.  相似文献   

2.
Photosystem II chlorophyll fluorescence and leaf net gas exchanges (CO2 and H2O) were measured simultaneously on bean leaves (Phaseolus vulgaris L.) submitted either to different ambient CO2 concentrations or to a drought stress. When leaves are under photorespiratory conditions, a simple fluorescence parameter F/ Fm (B. Genty et al. 1989, Biochem. Biophys. Acta 990, 87–92; F = difference between maximum, Fm, and steady-state fluorescence emissions) allows the calculation of the total rate of photosynthetic electron-transport and the rate of electron transport to O2. These rates are in agreement with the measurements of leaf O2 absorption using 18O2 and the kinetic properties of ribulose-1,5bisphosphate carboxylase/oxygenase. The fluorescence parameter, F/Fm, showed that the allocation of photosynthetic electrons to O2 was increased during the desiccation of a leaf. Decreasing leaf net CO2 uptake, either by decreasing the ambient CO2 concentration or by dehydrating a leaf, had the same effect on the partitioning of photosynthetic electrons between CO2 and O2 reduction. It is concluded that the decline of net CO2 uptake of a leaf under drought stress is only due, at least for a mild reversible stress (causing at most a leaf water deficit of 35%), to stomatal closure which leads to a decrease in leaf internal CO2 concentration. Since, during the dehydration of a leaf, the calculated internal CO2 concentration remained constant or even increased we conclude that this calculation is misleading under such conditions.Abbreviations Ca, Ci ambient, leaf internal CO2 concentrations - Fm, Fo, Fs maximum, minimal, steady-state fluorescence emission - Fv variable fluorescence emission - PPFD photosynthetic photon flux density - qp, qN photochemical, non-photochemical fluorescence quenching - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

3.
Experimental investigations of ozone (O3) effects on plants have commonly used short, acute [O3] exposure (>100 ppb, on the order of hours), while in field crops damage is more likely caused by chronic exposure (<100 ppb, on the order of weeks). How different are the O3 effects induced by these two fumigation regimes? The leaf‐level photosynthetic response of soybean to acute [O3] (400 ppb, 6 h) and chronic [O3] (90 ppb, 8 h d?1, 28 d) was contrasted via simultaneous in vivo measurements of chlorophyll a fluorescence imaging (CFI) and gas exchange. Both exposure regimes lowered leaf photosynthetic CO2 uptake about 40% and photosystem II (PSII) efficiency (Fq′/Fm′) by 20% compared with controls, but this decrease was far more spatially heterogeneous in the acute treatment. Decline in Fq′/Fm′ in the acute treatment resulted equally from decreases in the maximum efficiency of PSII (Fv′/Fm′) and the proportion of open PSII centres (Fq′/Fv′), but in the chronic treatment decline in Fq′/Fm′ resulted only from decrease in Fq′/Fv′. Findings suggest that acute and chronic [O3] exposures do not induce identical mechanisms of O3 damage within the leaf, and using one fumigation method alone is not sufficient for understanding the full range of mechanisms of O3 damage to photosynthetic production in the field.  相似文献   

4.
The present study was performed to investigate the adjustment of the rate parameters of the light and dark reactions of photosynthesis to the natural growth light in leaves of an overstorey species, Betula pendula Roth, a subcanopy species, Tilia cordata P. Mill., and a herb, Solidago virgaurea L., growing in a natural plant community in Järvselja, Estonia. Shoots were collected from the site and individual leaves were measured in a laboratory applying a standardized routine of kinetic gas exchange, Chl fluorescence and 820 nm transmittance measurements. These measurements enabled the calculations of the quantum yield of photosynthesis and rate constants of excitation capture by photochemical and non-photochemical quenchers, rate constant for P700+ reduction via the cytochrome b6f complex with and without photosynthetic control, actual maximum and potential (uncoupled) electron transport rate, stomatal and mesophyll resistances for CO2 transport, Km(CO2) and Vm of ribulose-bisphosphate carboxylase-oxygenase (Rubisco) in vivo. In parallel, N, Chl and Rubisco contents were measured from the same leaves. No adjustment toward higher quantum yield in shade compared with sun leaves was observed, although relatively more N was partitioned to the light-harvesting machinery in shade leaves ( H. Eichelmann et al., 2004 ). The electron transport rate through the Cyt b6f complex was strongly down-regulated under saturating light compared with darkness, and this was observed under atmospheric, as well as saturating CO2 concentration. In vivo Vm measurements of Rubisco were lower than corresponding reported measurements in vitro, and the kcat per reaction site varied widely between leaves and growth sites. The correlation between Rubisco Vm and the photosystem I density was stronger than between Vm and the density of Rubisco active sites. The results showed that the capacity of the photosynthetic machinery decreases in shade-adjusted leaves, but it still remains in excess of the actual photosynthetic rate. The photosynthetic control systems that are targeted to adjust the photosynthetic rate to meet the plant's needs and to balance the partial reactions of photosynthesis, down-regulate partial processes of photosynthesis: excess harvested light is quenched non-photochemically; excess electron transport capacity of Cyt b6f is down-regulated by ΔpH-dependent photosynthetic control; Rubisco is synthesized in excess, and the number of activated Rubisco molecules is controlled by photosystem I-related processes. Consequently, the nitrogen contained in the components of the photosynthetic machinery is not used at full efficiency. The strong correlation between leaf nitrogen and photosynthetic performance is not due to the nitrogen requirements of the photosynthetic apparatus, but because a certain amount of energy must be captured through photosynthesis to maintain this nitrogen within a leaf.  相似文献   

5.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

6.
The dwarf bamboo (Fargesia rufa Yi), growing understory in subalpine dark coniferous forest, is one of the main foods for giant panda, and it influences the regeneration of subalpine coniferous forests in southwestern China. To investigate the effects of elevated CO2, temperature and their combination, the dwarf bamboo plantlets were exposed to two CO2 regimes (ambient and double ambient CO2 concentration) and two temperatures (ambient and +2.2°C) in growth chambers. Gas exchange, leaf traits and carbohydrates concentration were measured after the 150‐day experiment. Elevated CO2 significantly increased the net photosynthetic rate (Anet), intrinsic water‐use efficiency (WUEi) and carbon isotope composition (δ13C) and decreased stomatal conductance (gs) and total chlorophyll concentration based on mass (Chlm) and area (Chla). On the other hand, elevated CO2 decreased specific leaf area (SLA), which was increased by elevated temperature. Elevated CO2 also increased foliar carbon concentration based on mass (Cm) and area (Ca), nitrogen concentration based on area (Na), carbohydrates concentration (i.e. sucrose, sugar, starch and non‐structural carbohydrates) and the slope of the Anet–Na relationship. However, elevated temperature decreased Cm, Ca and Na. The combination of elevated CO2 and temperature hardly affected SLA, Cm, Ca, Nm, Na, Chlm and Chla. Variables Anet and Na had positive linear relationships in all treatments. Our results showed that photosynthetic acclimation did not occur in dwarf bamboo at elevated CO2 and it could adjust physiology and morphology to enable the capture of more light, to increase WUE and improve nutritional conditions.  相似文献   

7.
Leaf gas-exchange and chemical composition were investigated in seedlings of Quercus suber L. grown for 21 months either at elevated (700 μmol mol–1) or normal (350 μmol mol–1) ambient atmospheric CO2 concentrations, [CO2], in a sandy nutrient-poor soil with either ‘high’ N (0.3 mol N m–3 in the irrigation solution) or with ‘low’ N (0.05 mol N m–3) and with a constant suboptimal concentration of the other macro- and micronutrients. Although elevated [CO2] yielded the greatest total plant biomass in ‘high’ nitrogen treatment, it resulted in lower leaf nutrient concentrations in all cases, independent of the nutrient addition regime, and in greater nonstructural carbohydrate concentrations. By contrast, nitrogen treatment did not affect foliar N concentrations, but resulted in lower phosphorus concentrations, suggesting that under lower N, P use-efficiency in foliar biomass production was lower. Phosphorus deficiency was evident in all treatments, as photosynthesis became CO2 insensitive at intercellular CO2 concentrations larger than ≈ 300 μmol mol–1, and net assimilation rates measured at an ambient [CO2] of 350 μmol mol–1 or at 700 μmol mol–1 were not significantly different. Moreover, there was a positive correlation of foliar P with maximum Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) carboxylase activity (Vcmax), which potentially limits photosynthesis at low [CO2], and the capacities of photosynthetic electron transport (Jmax) and phosphate utilization (Pmax), which are potentially limiting at high [CO2]. None of these potential limits was correlated with foliar nitrogen concentration, indicating that photosynthetic N use-efficiency was directly dependent on foliar P availability. Though the tendencies were towards lower capacities of potential limitations of photosynthesis in high [CO2] grown specimens, the effects were statistically insignificant, because of (i) large within-treatment variability related to foliar P, and (ii) small decreases in P/N ratio with increasing [CO2], resulting in balanced changes in other foliar compounds potentially limiting carbon acquisition. The results of the current study indicate that under P-deficiency, the down-regulation of excess biochemical capacities proceeds in a similar manner in leaves grown under normal and elevated [CO2], and also that foliar P/N ratios for optimum photosynthesis are likely to increase with increasing growth CO2 concentrations. Symbols: A, net assimilation rate (μmol m–2 s–1); Amax, light-saturated A (μmol m–2 s–1); α, initial quantum yield at saturating [CO2] and for an incident Q (mol mol–1); [CO2], atmospheric CO2 concentration (μmol mol–1); Ci, intercellular CO2 concentration (μmol mol–1); Ca, CO2 concentration in the gas-exchange cuvette (μmol mol–1); FB, fraction of leaf N in ‘photoenergetics’; FL, fraction of leaf N in light harvesting; FR, fraction of leaf N in Rubisco; Γ*, CO2 compensation concentration in the absence of Rd (μmol mol–1); Jmax*, capacity for photosynthetic electron transport; Jmc, capacity for photosynthetic electron transport per unit cytochrome f (mol e[mol cyt f]–1 s–1); Kc, Michaelis-Menten constant for carboxylation (μmol mol–1); Ko, Michaelis-Menten constant for oxygenation (mmol mol–1); MA, leaf dry mass per area (g m–2); O, intercellular oxygen concentration (mmol mol–1); [Pi], concentration of inorganic phosphate (mM); Pmax*, capacity for phosphate utilization; Q, photosynthetically active quantum flux density (μmol m–2 s–1); Rd*, day respiration (CO2 evolution from nonphotorespiratory processes continuing in the light); Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; RUBP, ribulose-1,5-bisphosphate; Tl, leaf temperature (°C); UTPU*, rate of triose phosphate utilization; Vcmax*, maximum Rubisco carboxylase activity; Vcr, specific activity of Rubisco (μmol CO2[g Rubisco]–1 s–1] *given in either μmol m–2 s–1 or in μmol g–1 s–1 as described in the text.  相似文献   

8.
A new approach was used to experimentally dry and warm a Mediterranean shrubland. By means of automatically sliding curtains, the drought period was extended by excluding rain over the two growing seasons (spring and autumn), and passive warming was created by avoiding infra‐red dissipation at night over the whole year. The aim of the study was to test how a future extended drought period and an increase in temperatures could affect the photosynthetic and water use strategies of two co‐occurring Mediterranean shrubs, Erica multiflora and Globularia alypum, which are common species of the dry coastal shrublands. The shoot water potential, leaf gas exchange rates and chlorophyll a fluorescence of plants was monitored seasonally during two years (1999–2001). In addition we measured the photosynthetic response curves to light and CO2 in autumn 2001 and the foliar N concentration and leaf C and N stable isotopes in summer 1999 and 2000. Droughted plants of both shrub species showed lower shoot water potentials, transpiration rates and stomatal conductances than control plants, although there was a high seasonal variability. Drought treatment reduced significantly the overall leaf net photosynthetic rates of E. multiflora, but not of G. alypum. Droughted plants of E. multiflora also showed lower leaf net photosynthetic rates in response to light and CO2 and lower carboxylation efficiency than controls, but there was no significant effect of drought on its overall photosystem II (PSII) photochemical efficiency. Although warming treatment did not affect the leaf net photosynthetic rates of the two species overall the study, it increased significantly the carboxylation efficiency and leaf net photosynthetic rates of G. alypum plants in response to CO2 levels in autumn 2001. In addition, warming treatment increased the potential photochemical efficiency of PSII (Fv/Fm) of both species (but especially of G. alypum) at predawn or midday and mainly in autumn and winter. Thus, the results suggest that drier conditions might decrease the annual productivity of these Mediterranean shrubs, particularly of E. multiflora, and that future warming could alleviate the present low temperature constraints of the photosynthetic performance of the two studied species, but especially of G. alypum, during the colder seasons. Ultimately, drier and warmer conditions in the near future may change the competitive relationship among these species in such Mediterranean ecosystems.  相似文献   

9.
The magnitude of changes in carboxylation capacity in dominant plant species under long‐term elevated CO2 exposure (elevated pCa) directly impacts ecosystem CO2 assimilation from the atmosphere. We analyzed field CO2 response curves of 16 C3 species of different plant growth forms in favorable growth conditions in four free‐air CO2 enrichment (FACE) experiments in a pine and deciduous forest, a grassland and a desert. Among species and across herb, tree and shrub growth forms there were significant enhancements in CO2 assimilation (A) by +40±5% in elevated pCa (49.5–57.1 Pa), although there were also significant reductions in photosynthetic capacity in elevated pCa in some species. Photosynthesis at a common pCa (Aa) was significantly reduced in five species growing under elevated pCa, while leaf carboxylation capacity (Vcmax) was significantly reduced by elevated pCa in seven species (change of ?19±3% among these species) across different growth forms and FACE sites. Adjustments in Vcmax with elevated pCa were associated with changes in leaf N among species, and occurred in species with the highest leaf N. Elevated pCa treatment did not affect the mass‐based relationships between A or Vcmax and N, which differed among herbs, trees and shrubs. Thus, effects of elevated pCa on leaf C assimilation and carboxylation capacity occurred largely through changes in leaf N, rather than through elevated pCa effects on the relationships themselves. Maintenance of leaf carboxylation capacity among species in elevated pCa at these sites depends on maintenance of canopy N stocks, with leaf N depletion associated with photosynthetic capacity adjustments. Since CO2 responses can only be measured experimentally on a small number of species, understanding elevated CO2 effects on canopy Nm and Na will greatly contribute to an ability to model responses of leaf photosynthesis to atmospheric CO2 in different species and plant growth forms.  相似文献   

10.
A comparison of the effects of a rapid and a slowly imposed water deficit on photosynthesis was performed in Setaria sphacelata var. splendida (Stapf) Clayton, a C4 NADP‐ME grass. Gas exchange was measured in rapidly and slowly dehydrated adult leaves either under atmospheric CO2 partial pressure with an infrared gas analyser or under saturating CO2 partial pressure with a leaf disc oxygen electrode. These measurements were used to calculate stomatal and non‐stomatal limitations to photosynthesis. These were further investigated using modulated chlorophyll a fluorescence measurements and photosynthetic pigment quantification. The decrease of net photosynthesis, leaf conductance and water use efficiency was more pronounced under rapid stress than in slow stress. However, photosynthesis is always mainly limited by stomata in both types of stress, albeit the contribution of non‐stomatal limitations increases at severe water deficits in slow stress experiments. The substomatal CO2 partial pressure significantly increased in both types of stress, suggesting an increased resistance due to an internal barrier to CO2 diffusion. Physical alterations in the structure of the intercellular spaces due to leaf shrinkage may account for these results. The maximal photochemical efficiency of photosystem II (PSII) was remarkably resistant to stress, as the Fv/Fm ratio decreased only at severe water deficit. On the contrary, the effective photochemical efficiency of PSII (ΔF/Fm) measured under high actinic light decreased linearly in both types of stress, although in a more pronounced way under rapid stress. A similar variation in photochemical quenching suggests that the decrease of ΔF/Fm is mainly due to the closure of PSII reaction centres. The non‐photochemical quenching did not change significantly except under severe dehydration indicating that the energization state of thylakoids remained stable under stress. The decrease observed in photosynthetic pigments may be an adaptation to stress rather than a limiting factor to photosynthesis. Results suggests that, although intrinsic mesophyll metabolic inhibitions occur, stomatal limitation to CO2 diffusion is the main reason for the decrease in photosynthesis.  相似文献   

11.
The susceptibility to photoinhibition of tree species from three different successional stages were examined using chlorophyll fluorescence and gas exchange techniques. The three deciduous broadleaf tree species were Betula platyphylla var. japonica, pioneer and early successional, Quercus mongolica, intermediate shade‐tolerant and mid‐successional, and Acer mono, shade‐tolerant and late successional. Tree seedlings were raised under three light regimes: full sunlight (open), 10% full sun, and 5% full sun. Susceptibility to photoinhibition was assessed on the basis of the recovery kinetics of the ratio of vaviable to maximum fluorescence (Fv/Fm) of detached leaf discs exposed to about 2000 μmol m?1 s?1 photon flux density (PFD) for 2 h under controlled conditions (25 to 28 °C, fully hydrated). Differences in susceptibility to photodamage among species were not significant in the open and 10% full sun treatments. But in 5% full sun, B. platyphylla sustained a significantly greater photodamage than other species, probably associated with having the lowest photosynthetic capacity indicated by light‐saturated photosynthetic rate (B. platyphylla, 9·87, 5·85 and 2·82; Q. mongolica, 8·05, 6·28 and 4·41; A. mono, 7·93, 6·11 and 5·08 μmol CO2 m?1 s?1for open, 10% and 5% full sun, respectively). To simulate a gap formation and assess its complex effects including high temperature and water stress in addition to strong light on the susceptibility to photoinhibition, we examined photoinhibition in the field by means of monitoring ΔF/Fm on the first day of transfer to natural daylight. Compared with ΔF/Fm in AM, the lower ΔF/Fm in PM responding to lower PFD following high PFD around noon indicated that photoinhibition occurred in plants grown in 10 and 5% full sun. The diurnal changes of ΔF/Fm showed that Q. mongolica grown in 5% full sun was less susceptible to photoinhibition than A. mono although they showed little differences both in photosynthetic capacity in intact leaves and susceptibility to photoinhibition based on leaf disc measurements. These results suggest that shade‐grown Q. mongolica had a higher tolerance for additional stresses such as high temperature and water stress in the field, possibly due to their lower plasticity in leaf anatomy to low light environment.  相似文献   

12.
Two silver birch (Betula pendula Roth) clones K1659 and V5952 were grown in open‐top chambers over 3 years (age 7–9 years). The treatments were increased CO2 concentration (+CO2, 72 Pa), increased O3 concentration (+O3, 2 × ambient O3 with seasonal AOT40 up to 28 p.p.m. h) and in combination (+CO2 + O3). Thirty‐seven photosynthetic parameters were measured in the laboratory immediately after excising leaves using a computer‐operated routine of gas exchange and optical measurements. In control leaves the photosynthetic parameters were close to the values widely used in a model (Farquhar, von Caemmerer and Berry, Planta 149, 78–90, 1980). The distribution of chlorophyll between photosystem II and photosystem I, intrinsic quantum yield of electron transport, uncoupled turnover rate of Cyt b6f, Rubisco specificity and Km (CO2) were not influenced by treatments. Net photosynthetic rate responded to +CO2 with a mean increase of 17% in both clones. Dry weight of leaves increased, whereas protein, especially Rubisco content and the related photosynthetic parameters decreased. Averaged over 3 years, eight and 17 mechanistically independent parameters were significantly influenced by the elevated CO2 in clones K1659 and V5952, respectively. The elevated O3 caused a significant decrease in the average photosynthetic rate of clone V5952, but not of clone K1659. The treatment caused changes in one parameter of clone K1659 and in 11 parameters of clone V5952. Results of the combined treatment indicated that +O3 had less effect in the presence of +CO2 than alone. Interestingly, changes in the same photosynthetic parameters were observed in chamberless grown trees of clone V5952 as under +O3 treatment in chambers, but this was not observed for clone K1659. These results suggest that during chronic fumigation, at concentrations below the threshold of visible leaf injuries, ozone influenced the photosynthetic parameters as a general stress factor, in a similar manner to weather conditions that were more stressful outside the chambers. According to this hypothesis, the sensitivity of a species or a clone to ozone is expected to depend on the growth conditions: the plant is less sensitive to ozone if the conditions are close to optimal and it is more sensitive to ozone under conditions of stress.  相似文献   

13.
Abstract

A greenhouse experiment was conducted to examine the salt-induced changes in some key physio-biochemical attributes in eggplant (cv. New Noble) plants. Eggplant plants were grown under varying levels (0, 50, 100, and 150 mM) of sodium chloride under greenhouse conditions supplied with natural light and other climatic conditions. Varying saline regimes in growth medium significantly reduced the shoot and root fresh and dry weights, shoot and root lengths, relative water content, chlorophyll a and b pigments, photosynthetic rate (A), water-use efficiency, stomatal conductance (g s ), leaf and root K+, total phenolics, total soluble proteins, activity of superoxide dismutase (SOD), and leaf water and osmotic potentials in all eggplant plants. However, in contrast, saline regimes of the root growing medium did not affect transpiration rate (E), internal CO2 concentration (C i ), C i /C a ratio, photochemical quenching (qP), non-photochemical quenching, efficiency of photosystem-II (F v /F m ), leaf and root Ca2+ as well as ascorbic acid (AsA) contents in eggplant. A significant increase was observed in leaf turgor potential, free proline and glycinebetaine contents, leaf and root Na+ contents, malondialdehyde and hydrogen peroxide (H2O2) contents and activities of peroxidase (POD) and catalase (CAT) in eggplant plants under varying saline regimes. Overall, salt-induced growth reduction in eggplant plants was found to be associated with high accumulation of Na+ in both roots and shoots, which adversely affected photosynthetic capacity, chlorophyll pigments, K+ and Ca2+ contents, H2O2 and AsA levels and activities of SOD, POD, and CAT.  相似文献   

14.
Photosynthetic light‐response curves of the deep‐water Laminaria abyssalis Oliveira and of the intertidal L. digitata Lamoroux were determined and related to photoinhibition phenomena as monitored by oxygen evolution and photosystem II efficiency (FV/FM). L. abyssalis has half the pigment content, number of cells and plastids, and photosynthetic capacity per unit area compared with L. digitata. L. abyssalis showed a higher in vivo Chl a absorption coefficient and higher photosynthetic efficiency on a Chl a basis, although the two algae showed somewhat similar light‐response curves on a Chl a basis. Both species showed similar Chl a/Chl c and Chl a/fucoxanthin ratios, and similar dark respiration rates and light compensation points. In addition, they also showed similar convexities in their light‐response curves and no differences in their light saturation of FV/FM. Room temperature chlorophyll fluorescence induction measurements of fronds incubated in 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) suggest that both species may have a similar PSII absorption cross section. Thus, L. abyssalis appears to optimize its light absorption at very low light intensities, not by increasing the pigment content, but by absorbing light more efficiently. However, L. abyssalis was more sensitive to photoinhibition than L. digitata and showed no recovery of FV/FM and O2 evolution after a photoinhibitory treatment, even with a subsequent exposure to 24 h of dim light. L. digitata, on the other hand, recovered its photosynthetic capacity within 6 h under dim light. These results suggest that photosynthetic light‐induction curves based on Chl a are not a good indicator of either the photosynthetic capacity or the sensitivity to photoinhibition when macroalgae of different species are being compared. Based on their light‐response and photoinhibition characteristics, we suggest that L. abyssalis, a deep‐water oceanic macroalgae, is an atypical shade alga whereas L. digitata has the properties of a sun alga.  相似文献   

15.
Leaf scald, caused by Monographella albescens, is one of the major diseases in rice worldwide. This study investigated the effect of silicon (Si) on the photosynthetic gas exchange parameters [net CO2 assimilation rate (A), stomatal conductance to water vapour (gs), transpiration rate (E)] and internal CO2 concentration (Ci), chlorophyll (Chl) fluorescence a parameters [minimal fluorescence (F0), maximum fluorescence (Fm), maximum quantum yield of photosystem II (Fv/Fm)], photochemical quenching coefficient (qp), effective quantum yield of PSII [Y(II)], quantum yield of regulated energy dissipation [Y(NPQ)] and quantum yield dissipation non‐regulated [Y(NO)] and the concentrations of pigments in rice plants grown in nutrient solutions containing either 0 (?Si) or 2 mM Si (+Si) and non‐inoculated or inoculated with M. albescens. Leaf scald severity decreased with higher foliar Si concentration. For the inoculated +Si plants, A, gs and E were significantly higher in comparison with the inoculated ?Si plants, in which Ci was significantly increased. Similarly, the concentrations of Chla, Chlb, total Chla+b and carotenoids were higher for the +Si plants in comparison with the ?Si plants. Changes in the images of Chl a fluorescence were first observed precisely on the ?Si plants leaves in comparison with the +Si plants. A decrease of qP and Y(II) in inoculated ?Si plants, in comparison with the inoculated +Si plants, was accompanied by an increase in Y(NPQ) and Y(NO). Notably, the extent of the leaf areas was much more evident for Y(II) and qP in comparison with F0, Fm and Fv/Fm, suggesting that Y(II) and qP were good predictors in detecting the early effects of leaf scald on the leaf photosynthesis. For the +Si non‐inoculated plants, changes in Y(II) were associated with alterations in both Y(NPQ) and Y(NO) compared with non‐inoculated ?Si plants. In conclusion, the photosynthetic performance (as demonstrated by the gas exchange and Chl a fluorescence parameters) and the pigment pools of rice plants infected with M. albescens were preserved by Si supply and, therefore, provided an increase in rice resistance against leaf scald.  相似文献   

16.
Two species of eucalypt (Eucalyptus macrorhyncha and E. rossii) were grown under conditions of high temperatures (45 °C, maximum) and high light (1500 μmol m?2 s?1, maximum) at either ambient (350 μL L?1) or elevated (700 μL L?1) CO2 concentrations for 8 weeks. The growth enhancement, in terms of total dry weight, was 41% and 103% for E. macrorhyncha and E. rossii, respectively, when grown in elevated [CO2]. A reduction in specific leaf area and increased concentrations of non-structural carbohydrates were observed for leaves grown in elevated [CO2]. Plants grown in elevated [CO2] had an overall increase in photosynthetic CO2 assimilation rate of 27%; however, when measured at the same CO2 concentration a down-regulation of photosynthesis was evident especially for E. macrorhyncha. During the midday period when temperatures and irradiances were maximal, photosynthetic efficiency as measured by chlorophyll fluorescence (Fv/Fm) was lower in E. macrorhyncha than in E. rossii. Furthermore, Fv/Fm was lower in leaves of E. macrorhyncha grown under elevated than under ambient [CO2]. These reductions in Fv/Fm were accompanied by increases in both photochemical (qP) and nonphotochemical quenching (qN and NPQ), and by increases in the concentrations of xanthophyll cycle pigments with an increased proportion of the total xanthophyll cycle pool comprising of antheraxanthin and zeaxanthin. Thus, increased atmospheric [CO2] may enhance photoinhibition when environmental stresses such as high temperatures limit the capacity of a plant to respond with growth to elevated [CO2].  相似文献   

17.
Limited data are available on the effects of phosphorus (P) and aluminum (Al) interactions on Citrus spp. growth and photosynthesis. Sour pummelo (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing 50, 100, 250 and 500 μM KH2PO4× 0 and 1.2 mM AlCl3· 6H2O. Thereafter, P and Al in roots, stems and leaves, and leaf chlorophyll (Chl), CO2 assimilation, ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) and Chl a fluorescence (OJIP) transients were measured. Under Al stress, P increased root Al, but decreased stem and leaf Al. Shoot growth is more sensitive to Al than root growth, CO2 assimilation and OJIP transients. Al decreased CO2 assimilation, Rubisco activity and Chl content, whereas it increased or did not affect intercellular CO2 concentration. Al affected CO2 assimilation more than Rubisco and Chl under 250 and 500 μM P. Al decreased root, stem and leaf P, leaf maximum quantum yield of primary photochemistry (Fv/Fm) and total performance index (PItot,abs), but increased leaf minimum fluorescence (Fo), relative variable fluorescence at K‐ and I‐steps. P could alleviate Al‐induced increase or decrease for all these parameters. We conclude that P alleviated Al‐induced inhibition of growth and impairment of the whole photosynthetic electron transport chain from photosystem II (PSII) donor side up to the reduction of end acceptors of photosystem I (PSI), thus preventing photosynthesis inhibition through increasing Al immobilization in roots and P level in roots and shoots. Al‐induced impairment of the whole photosynthetic electron transport chain may be associated with growth inhibition.  相似文献   

18.
This paper compares the changes in water content, chlorophyll a fluorescence and leaf ultrastructure during dehydration and rehydration in two desiccation tolerant plants Xerophyta viscosa and X. retinervis. Both species showed decreasing quantum efficiency of photosystem 2 (Fv/Fm) with decreasing water content. Extreme water loss observed after 25 d of dehydration resulted in considerable damage of leaf tissue ultrastructure. After rehydration, both species need several days to reconstitute their photosynthetic machinery.  相似文献   

19.
Photoinhibition has been often evaluated with leaf discs floated on water or placed on wet papers to prevent desiccation. Under these conditions, there is a possibility that CO2 diffusion is blocked by water, which may lead to reduction in photosynthetic CO2 assimilation. Using Chenopodium album L. grown at two irradiances, photosynthesis, quantum yield of Photosystem II (ΔF/F m′), non-photochemical quenching (qN), and photoinhibition were compared between detached leaves and leaf discs. In low-light-grown plants, photoinhibition was greater in leaf discs than in detached leaves, while in high-light-grown plants, there was little difference. Leaf discs showed lower rates of photosynthesis and ΔF/F m′, and higher qN. The ΔF/F m′ in leaf discs increased when leaf discs were exposed to high concentration of CO2, suggesting that CO2 diffusion to chloroplasts was limited in leaf discs floated on water. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
G. J. Collatz 《Planta》1977,134(2):127-132
The response of net photosynthesis and apparent light respiration to changes in [O2], light intensity, and drought stress was determined by analysis of net photosynthetic CO2 response curves. Low [O2] treatment resulted in a large reduction in the rate of photorespiratory CO2 evolution. Lightintensity levels influenced the maximum net photosynthetic rate at saturating [CO2]. These results indicate that [CO2], [O2] and light intensity affect the levels of substrates involved in the enzymatic reactions of photosynthesis and photorespiration. Intracellular resistance to CO2 uptake decreased in low [O2] and increased at low leaf water potentials. This response reflects changes in the efficiency with which photosynthetic and photorespiratory substrates are formed and utilized. Water stress had no effect on the CO2 compensation point or the [CO2] at which net photosynthesis began to saturate at high light intensity. The relationship between these data and recently published in-vitro kinetic measurements with ribulose-diphosphate carboxylase is discussed.Abbreviations C w intracellular CO2 concentration - F gross gross photosynthesis - F net net photosynthesis - I light intensity - R L light respiration rate - r c carboxylation resistance - r 8 leaf gas-phase resistance - r i intracellular resistance; to CO2 uptake - r t resistance to CO2 flux between the intercellular spaces and the carboxylation sites - T L leaf temperature - t leaf water potential - CO2 compensation point  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号