首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
高等植物通过调节顶端分生组织和侧生分生组织的活性建立地上株型系统, 分生组织的活性受环境信号、发育阶段和遗传因素的综合调控, 植物激素参与这些信号的整合。顶端优势是植物分枝调控的核心问题, 而生长素对顶端优势的形成和维持发挥关键作用。本文综述了近几年与植物地上部分株型形成相关的生长素合成代谢、极性运输及信号转导领域的研究进展, 并提出了展望。  相似文献   

2.
张倩倩  郑童  予茜  葛磊 《植物学报》2018,53(1):126-138
干细胞巢的维持与后代细胞的分化是多细胞高等生物个体发育的基础。生长素对植物茎尖和根尖分生组织的形态建成,尤其是对位于植物这2个末端的分生组织中心的干细胞巢的活性维持起着至关重要的作用。该文综述了近几年在植物根尖干细胞发育领域的研究进展,主要阐释了PLT蛋白途径、SCR-SHR蛋白途径以及环境因子多信号调控模块维持植物根尖分生组织中干细胞巢稳定的机制,揭示了生长素可以通过就近合成、极性运输以及信号转导3种方式参与这些信号模块的调控,从而维持生长素在根尖静止中心细胞附近干细胞巢的浓度梯度,精确地平衡植物干细胞巢中细胞的增殖与分化。  相似文献   

3.
有性生殖是有花植物的一个重要特征, 胚胎则是实现有性生殖和世代交替的重要载体。植物胚胎从双受精开始, 经历了合子极性建立、顶基轴形成、细胞层分化和器官形成等过程, 这些过程都受到生长素的调控。近年来的研究表明, 生长素在生物合成、极性运输和信号转导3个层面上调控胚胎的发育过程。该文以双子叶植物拟南芥(Arabidopsis thaliana)为例, 综述了生长素对胚胎早期发育过程, 包括合子极性和顶基轴建立、表皮原特化和对称模式转变、胚根原特化和根尖分生组织形成及茎尖分生组织形成等发育的调控机制。  相似文献   

4.
植物茎分枝的分子调控   总被引:4,自引:0,他引:4  
植物茎分枝结构决定了不同植物的不同形态结构.本文从腋生分生组织的发生、腋芽的生长两个方面综述了近年来植物分枝发生发育相关的分子机理研究及其进展.发现在不同植物中腋分生组织形成的基本机制是相似的,LS(lateral suppressor)及其同源基因在不同植物中都参与腋生分生组织的形成,而BL(blind)及其同源基因也参与调控腋生分生组织的形成.腋生分生组织的形成可能也是受激素调控的.目前,对腋芽生长的分子调控机制的认识主要集中于生长素通过二级信使的作用调控腋芽的生长.而生长素调控腋芽生长的机制已经较为清楚的有两条途径:一是生长素通过抑制细胞分裂素合成来调控腋芽的生长;另一途径是一种类胡萝卜素衍生的信号物质参与生长素的运输调控(MAX途径)来调控腋芽的生长.最新研究表明,TB1的拟南芥同源基因在MAX途径的下游负调控腋芽的生长.此外,增强表达OsNAC2也促进腋芽的生长.  相似文献   

5.
植物干细胞调控的分子机制   总被引:3,自引:0,他引:3  
植物干细胞位于茎尖分生组织区和根尖分生组织区,是植物胚后发育中新的器官产生的源泉.近几年,在干细胞及其周围组织区发现了一些与干细胞稳态维持有关的基因,这些基因产物与外源性信号(如生长素)一起组成复杂的调控网络控制植物的生长和发育.表观遗传修饰作为控制基因表达的一种方式也对植物干细胞有重要的影响.该文介绍近几年植物干细胞分化调控的最新进展.  相似文献   

6.
拟南芥矮小丛生突变体的分离与分子鉴定   总被引:2,自引:0,他引:2  
顶端优势是指侧生分生组织的生长被主茎或主花序所抑制。最近的研究通过分离和鉴定顶端优势发生改变的突变体开始揭示顶端优势的分子机制。通过T-DNA标签法分离了拟南芥矮小丛生(bushy and dwarf l,budl)突变体。突变体植株的表型包括顶端优势丧失、株型矮小,表明budl突变体存在生长素代谢、运输或信号传导的缺陷。一个对生长素特异反应的启动子驱动的报告基因在budl中表达模式改变。生长素敏感性和运输能力的测定表明这两个过程在budl中均正常。以上结果显示budl表型是生长素代谢缺陷的结果。遗传分析表明BUDI为半显性突变且与一个T-DNA插入共分离,可通过iPCR方法分离。  相似文献   

7.
张宏  金洁  王剑峰 《西北植物学报》2018,38(7):1369-1374
很多微生物通过分泌生长素和生长素前体与植物建立了有益的关系并改变植物根系的形态结构,此外,微生物分泌的其他代谢产物也能改变植物生长素信号通路。因此,生长素和生长素信号通路在微生物调控植物根系发育的过程中起着至关重要的作用。该文从生长素合成、生长素信号和生长素极性运输3个方面总结了生长素在微生物调控植物根系发育过程中的作用,主要包括微生物增加了植物内源生长素的含量、增强了生长素的信号和调控PIN蛋白的表达水平,进而如何调控植物生理和分子水平来适应微生物对其根系的改变,为进一步开展该方面的研究奠定了基础。  相似文献   

8.
植物重力反应的分子调控机制   总被引:1,自引:0,他引:1       下载免费PDF全文
《遗传》2016,(7)
重力是调节植物生长发育和形态建成的重要环境因子。植物感受到重力刺激后可以通过重力反应来协调自身各个器官的生长方向与重力方向之间的最适角度。植物重力反应过程分为重力信号的感受、重力信号的转导、生长素不对称分布的形成和重力反应器官的弯曲生长4个阶段。近年来,随着大量重力反应缺陷突变体的鉴定及其控制基因的功能解析,重力信号的感受和生长素不对称分布的分子机制等方面的研究取得了重要进展。作为植物适应环境变化的重要手段之一,重力反应还可以通过调节水稻(Oryza sativa L.)的分蘖角度实现对水稻株型和产量的调控。因此,研究植物的重力反应,不仅有助于解析植物生长发育的调控机制,对于作物株型的改良也具有重要的指导意义。然而,重力反应的分子机制及其调控网络仍不清楚。本文综述了近年来植物重力反应的调控机理及其调控水稻分蘖角度的作用机制,并对该领域未来的研究方向和热点进行了展望。  相似文献   

9.
顶端优势是指侧生分生组织的生长被主茎或主花序所抑制.最近的研究通过分离和鉴定顶端优势发生改变的突变体开始揭示顶端优势的分子机制.通过T-DNA标签法分离了拟南芥矮小丛生(bushy and dwarf 1, bud1 )突变体.突变体植株的表型包括顶端优势丧失、株型矮小,表明bud1 突变体存在生长素代谢、运输或信号传导的缺陷.一个对生长素特异反应的启动子驱动的报告基因在bud1 中表达模式改变.生长素敏感性和运输能力的测定表明这两个过程在 bud1中均正常.以上结果显示bud1 表型是生长素代谢缺陷的结果.遗传分析表明BUD1 为半显性突变且与一个T-DNA插入共分离,可通过iPCR方法分离.  相似文献   

10.
生长素是植物体内一类非常重要的内源激素,它控制着植物的细胞伸长,顶端优势,侧根发生及维管束的发育等重要的生理过程。研究表明,生长素领带传导与泛素介导的某些蛋白质的降解过程密切相关。本文对生长素信号传导与泛素化作用的最新研究进展进行了综述。  相似文献   

11.
12.
Axillary meristem initiation and bud growth in rice   总被引:1,自引:0,他引:1  
  相似文献   

13.
In plant development, leaf primordia are formed on the flanks of the shoot apical meristem in a highly predictable pattern. The cells that give rise to a primordium are sequestered from the apical meristem. Maintenance of the meristem requires that these cells be replaced by the addition of new cells. Despite the central role of these activities in development, the mechanism controlling and coordinating them is poorly understood. These processes have been characterized in the Arabidopsis mutant forever young (fey). The fey mutation results in a disruption of leaf positioning and meristem maintenance. The predicted FEY protein shares significant homology to a nodulin and limited homology to various reductases. It is proposed that FEY plays a role in communication in the shoot apex through the modification of a factor regulating meristem development.  相似文献   

14.
Plants display a wide variety of three dimensional forms, or architectures, that are critical for their survival in competitive environments or, in the case of crops, for their productivity. Architecture is generated after embryogenesis through the activities of shoot apical meristems and root apical meristems. Leaves are the principal lateral organ that determines the plant shoot morphology, and they normally develop in very regular patterns in time and space. The spatial pattern of leaf arrangement is called phyllotaxy, and the temporal pattern is determined by the plastochron, which is the time between successive leaf initiation events. Both programs involve many gene activities as well as the hormones auxin and cytokinin. Apparently, the mechanisms controlling phyllotaxy and plastochron share some regulatory components. In this review, the molecular mechanisms for both patterning programs will be discussed.  相似文献   

15.
Plants colonized the terrestrial environment over 450 million years ago. Since then, shoot architecture has evolved in response to changing environmental conditions. Our current understanding of the innovations that altered shoot morphology is underpinned by developmental studies in a number of plant groups. However, the least is known about mechanisms that operate in ferns--a key group for understanding the evolution of plant development. Using a novel combination of sector analysis, conditional probability modelling methods and histology, we show that shoots, fronds ('leaves') and pinnae ('leaflets') of the fern Nephrolepis exaltata all develop from single apical initial cells. Shoot initials cleave on three faces to produce a pool of cells from which individual frond apical initials are sequentially specified. Frond initials then cleave in two planes to produce a series of lateral merophyte initials that each contributes a unit of three pinnae to half of the mediolateral frond axis. Notably, this iterative pattern in both shoots and fronds is similar to the developmental process that operates in shoots of other plant groups. Pinnae initials first cleave in two planes to generate lateral marginal initials. The apical and marginal initials then divide in three planes to coordinately generate the determinate pinna. These findings impact both on our understanding of fundamental plant developmental processes and on our perspective of how shoot systems evolved.  相似文献   

16.
We study apical dominance in Alstroemeria, a plant with an architecture very different from the model species used in research on apical dominance. The standard explant was a rhizome with a tip and two vertically growing shoots from which the larger part had been excised leaving ca. 1 cm stem. The axillary buds that resumed growth were located at this 1-cm stem just above the rhizome. They were released by removal of the rhizome tip and the shoot tips. Replacement of excised tips by lanolin with indole-3-butyric acid (IBA) restored apical dominance. The auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and N-1-napthylphthalamic acid (NPA) reduced apical dominance. 6-Benzylaminopurine (BAP) enhanced axillary bud outgrowth but the highest concentrations (> 9 μM) caused fasciation. Thidiazuron (TDZ) did not show improvement relative to BAP. Even though the architecture of Alstroemeria and the model species are very different, their hormonal mechanisms in apical dominance are for the greater part very similar.  相似文献   

17.
18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号