首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Spinacia oleracea belongs to a wide group of GAPDHs found in most organisms displaying oxygenic photosynthesis, including cyanobacteria, green and red algae, and higher plants. As a major catalytic difference with respect to glycolytic GAPDH, photosynthetic GAPDH exhibits dual cofactor specificity toward pyridine nucleotides with a preference for NADP(H). Here we report the crystal structure of NAD-complexed recombinant A(4)-GAPDH (NAD-A(4)-GAPDH) from Spinacia oleracea, expressed in Escherichia coli. Its superimposition onto native A(4)-GAPDH complexed with NADP (NADP-A(4)-GAPDH) pinpoints specific conformational changes resulting from cofactor replacement. In photosynthetic NAD-A(4)-GAPDH, the side chain of Asp32 is oriented toward the coenzyme to interact with the adenine ribose diol, similar to glycolytic GAPDHs (NAD-specific). On the contrary, in NADP-A(4)-GAPDH Asp32 moves away to accommodate the additional 2'-phosphate group of the coenzyme and to minimize electrostatic repulsion. Asp32 rotation is allowed by the presence of the small residue Ala40, conserved in most photosynthetic GAPDHs, replacing bulky amino acid side chains in glycolytic GAPDHs. While in NADP-A(4)-GAPDH two amino acids, Thr33 and Ser188, are involved in hydrogen bonds with the 2'-phosphate group of NADP, in the NAD-complexed enzyme these interactions are lacking. The crystallographic structure of NAD-A(4)-GAPDH highlights that four residues, Thr33, Ala40, Ser188, and Ala187 (Leu, Leu, Pro, and Leu respectively, in glycolytic Bacillus stearothermophilus GAPDH sequence) are of primary importance for the dual cofactor specificity of photosynthetic GAPDH. These modifications seem to trace the minimum evolutionary route for a primitive NAD-specific GAPDH to be converted into the NADP-preferring enzyme of oxygenic photosynthetic organisms.  相似文献   

2.
Regulation of the Calvin–Benson cycle under varying light/dark conditions is a common property of oxygenic photosynthetic organisms and photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the targets of this complex regulatory system. In cyanobacteria and most algae, photosynthetic GAPDH is a homotetramer of GapA subunits which do not contain regulatory domains. In these organisms, dark-inhibition of the Calvin–Benson cycle involves the formation of a kinetically inhibited supramolecular complex between GAPDH, the regulatory peptide CP12 and phosphoribulokinase. Conditions prevailing in the dark, i.e. oxidation of thioredoxins and low NADP(H)/NAD(H) ratio promote aggregation. Although this regulatory system has been inherited in higher plants, these phototrophs contain in addition a second type of GAPDH subunits (GapB) resulting from the fusion of GapA with the C-terminal half of CP12. Heterotetrameric A2B2-GAPDH constitutes the major photosynthetic GAPDH isoform of higher plants chloroplasts and coexists with CP12 and A4-GAPDH. GapB subunits of A2B2-GAPDH have inherited from CP12 a regulatory domain (CTE for C-terminal extension) which makes the enzyme sensitive to thioredoxins and pyridine nucleotides, resembling the GAPDH/CP12/PRK system. The two systems are similar in other respects: oxidizing conditions and low NADP(H)/NAD(H) ratios promote aggregation of A2B2-GAPDH into strongly inactivated A8B8-GAPDH hexadecamers, and both CP12 and CTE specifically affect the NADPH-dependent activity of GAPDH. The alternative, lower activity with NADH is always unaffected. Based on the crystal structure of spinach A4-GAPDH and the analysis of site-specific mutants, a model of the autonomous (CP12-independent) regulatory mechanism of A2B2-GAPDH is proposed. Both CP12 and CTE seem to regulate different photosynthetic GAPDH isoforms according to a common and ancient molecular mechanism.  相似文献   

3.
In Chlamydomonas reinhardtii, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) consists of four GapA subunits. This A4 GAPDH is not autonomously regulated, as the regulatory cysteine residues present on GapB subunits are missing in GapA subunits. The regulation of A4 GAPDH is provided by another protein, CP12. To determine the molecular mechanisms of regulation of A4 GAPDH, we mutated three residues (R82, R190, and S195) of GAPDH of C. reinhardtii. Kinetic studies of GAPDH mutants showed the importance of residue R82 in the specificity of GAPDH for NADPH, as previously shown for the spinach enzyme. The cofactor NADPH was not stabilized through the 2'-phosphate by the serine 195 residue of the algal GAPDH, unlike the case in spinach. The mutation of R190 also led to a structural change that was not observed in the spinach enzyme. This mutation led to a loss of activity for NADPH and NADH, indicating the crucial role of this residue in maintaining the algal GAPDH structure. Finally, the interaction between GAPDH mutants and wild-type and mutated CP12 was analyzed by immunoblotting experiments, surface plasmon resonance, and kinetic studies. The results obtained with these approaches highlight the involvement of the last residue of CP12, Asp80, in modulating the activity of GAPDH by preventing access of the cofactor NADPH to the active site. These results help us to bridge the gap between our knowledge of structure and our understanding of functional biology in GAPDH regulation.  相似文献   

4.
Here, we report the first crystal structure of a photosynthetic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) complexed with NADP. The enzyme, purified from spinach chloroplasts, is constituted of a single type of subunit (A) arranged in homotetramers. It shows non-regulated NADP-dependent and NAD-dependent activities, with a preference for NADP. The structure has been solved to 3.0 A resolution by molecular replacement. The crystals belong to space group C222 with three monomers in the asymmetric unit. One of the three monomers generates a tetramer using the space group 222 point symmetry and a very similar tetramer is generated by the other two monomers, related by a non-crystallographic symmetry, using a crystallographic 2-fold axis.The protein reveals a large structural homology with known GAPDHs both in the cofactor-binding domain and in regions of the catalytic domain. Like all other GAPDHs investigated so far, the A(4)-GAPDH belongs to the Rossmann fold family of dehydrogenases. However, unlike most dehydrogenases of this family, the adenosine 2'-phosphate group of NADP does not form a salt-bridge with any positively charged residue in its surroundings, being instead set in place by hydrogen bonds with a threonine residue belonging to the Rossmann fold and a serine residue located in the S-loop of a symmetry-related monomer. While increasing our knowledge of an important photosynthetic enzyme, these results contribute to a general understanding of NADP versus NAD recognition in pyridine nucleotide-dependent enzymes.Although the overall structure of A(4)-GAPDH is similar to that of the cytosolic GAPDH from bacteria and eukaryotes, the chloroplast tetramer is peculiar, in that it can actually be considered a dimer of dimers, since monomers are bound in pairs by a disulphide bridge formed across Cys200 residues. This bridge is not found in other cytosolic or chloroplast GAPDHs from animals, bacteria, or plants other than spinach.  相似文献   

5.
Marri L  Trost P  Pupillo P  Sparla F 《Plant physiology》2005,139(3):1433-1443
Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form together with the regulatory peptide CP12 a supramolecular complex in Arabidopsis (Arabidopsis thaliana) that could be reconstituted in vitro using purified recombinant proteins. Both enzyme activities were strongly influenced by complex formation, providing an effective means for regulation of the Calvin cycle in vivo. PRK and CP12, but not GapA (A(4) isoform of GAPDH), are redox-sensitive proteins. PRK was reversibly inhibited by oxidation. CP12 has no enzymatic activity, but it changed conformation depending on redox conditions. GapA, a bispecific NAD(P)-dependent dehydrogenase, specifically formed a binary complex with oxidized CP12 when bound to NAD. PRK did not interact with either GapA or CP12 singly, but oxidized PRK could form with GapA/CP12 a stable ternary complex of about 640 kD (GapA/CP12/PRK). Exchanging NADP for NAD, reducing CP12, or reducing PRK were all conditions that prevented formation of the complex. Although GapA activity was little affected by CP12 alone, the NADPH-dependent activity of GapA embedded in the GapA/CP12/PRK complex was 80% inhibited in respect to the free enzyme. The NADH activity was unaffected. Upon binding to GapA/CP12, the activity of oxidized PRK dropped from 25% down to 2% the activity of the free reduced enzyme. The supramolecular complex was dissociated by reduced thioredoxins, NADP, 1,3-bisphosphoglycerate (BPGA), or ATP. The activity of GapA was only partially recovered after complex dissociation by thioredoxins, NADP, or ATP, and full GapA activation required BPGA. NADP, ATP, or BPGA partially activated PRK, but full recovery of PRK activity required thioredoxins. The reversible formation of the GapA/CP12/PRK supramolecular complex provides novel possibilities to finely regulate GapA ("non-regulatory" GAPDH isozyme) and PRK (thioredoxin sensitive) in a coordinated manner.  相似文献   

6.
The regulatory isoform of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a light-activated enzyme constituted by subunits GapA and GapB. The NADPH-dependent activity of regulatory GAPDH from spinach chloroplasts was affected by the redox potential (E(m,7.9), -353 +/- 11 mV) through the action of thioredoxin f. The redox dependence of recombinant GapB (E(m,7.9), -347 +/- 9 mV) was similar to native GAPDH, whereas GapA was essentially redox-insensitive. GapB mutants having one or two C-terminal cysteines mutated into serines (C358S, C349S, C349S/C358S) were less redox-sensitive than GapB. Different mutants with other cysteines substituted by serines (C18S, C274S, C285S) still showed strong redox regulation. Fully active GapB was a tetramer of B-subunits, and, when incubated with NAD, it associated to a high molecular weight oligomer showing low NADPH-dependent activity. The C-terminal GapB mutants (C358S, C349S, C349S/C358S) were active tetramers unable to aggregate to higher oligomers in the presence of NAD, whereas other mutants (C18S, C274S, C285S) again behaved like GapB. We conclude that a regulatory disulfide, between Cys-349 and Cys-358 of the C-terminal extension of GapB, does form in the presence of oxidized thioredoxin. This covalent modification is required for the NAD-dependent association into higher oligomers and inhibition of the NADPH-activity. By leading to GAPDH autoinhibition, thioredoxin and NAD may thus concur to the dark inactivation of the enzyme in vivo.  相似文献   

7.
K Ratnam  H Ma  T M Penning 《Biochemistry》1999,38(24):7856-7864
Fluorescence stopped-flow studies were conducted with recombinant rat liver 3 alpha-HSD, an aldo-keto reductase (AKR) that plays critical roles in steroid hormone inactivation, to characterize the binding of nicotinamide cofactor, the first step in the kinetic mechanism. Binding of NADP(H) involved two events: the fast formation of a loose complex (E.NADP(H)), followed by a conformational change in enzyme structure leading to a tightly bound complex (E.NADP(H)), which was observed as a fluorescence kinetic transient. Binding of NAD(H) was not characterized by a similar kinetic transient, implying a difference in the mode of binding of the two cofactors. Unlike previously characterized AKRs, the rates associated with the formation and decay of E.NADP(H) and E.NADP(H) were much faster than kcat for the oxidoreduction of various substrates, indicating that binding and release of cofactor is not rate-limiting overall in 3 alpha-HSD. Mutation of Arg 276, a highly conserved residue in AKRs that forms a salt bridge with the adenosine 2'-phosphate of NADP(H), resulted in large changes in Km and Kd for NADP(H) that were not observed with NAD(H). The loss in free energy associated with the increase in Kd for NADP(H) is consistent with the elimination of an electrostatic link. Importantly, this mutation abolished the kinetic transient associated with NADPH binding. Thus, anchoring of the adenosine 2'-phosphate of NADPH by Arg 276 appears to be obligatory for the fluorescence kinetic transients to be observed. The removal of Trp 86, a residue involved in fluorescence energy transfer with NAD(P)H, also abolished the kinetic transient, but mutation of Trp 227, a residue on a mobile loop associated with cofactor binding, did not. It is concluded that in 3 alpha-HSD, the time dependence of the change in Trp 86 fluorescence is due to cofactor anchoring, and thus, Trp 86 is a distal reporter of this event. Further, the loop movement that accompanies cofactor binding is spectrally silent.  相似文献   

8.
Spinach (Spinacia oleracea L.) chloroplast NAD(P)-dependent glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) was purified. The association state of the protein was monitored by fast protein liquid chromatography-Superose 12 gel filtration. Protein chromatographed in the presence of NADP+ and dithiothreitol consisted of highly NADPH-active protomers of 160 kDa; otherwise, it always consisted of a 600-kDa oligomer (regulatory form) favoured by the addition of NAD+ in buffers and with low NADPH-dependent activity (ratio of activities with NADPH versus NADH of 0.2–0.4). Glycerate 1,3-bisphosphate (BPGA) was prepared enzymatically using rabbit-muscle NAD-GAPDH, and purified. Among known modulators of spinach NAD(P)-GAPDH, BPGA is the most effective on a molar basis in stimulating NADPH-activity of dark chloroplast extracts and purified NAD(P)-GAPDH (activation constant, K a= 12 M). It also causes the enzyme to dissociate into 160-kDa protomers. The K m of BPGA both with NADPH or NADH as coenzyme is 4–7 M. NAD+ and NADH are inhibitory to the activation process induced by BPGA. This compound, together with NADP(H) and ATP belongs to a group of substrate-modifiers of the NADPH-activity and conformational state of spinach NAD(P)-GAPDH, all characterized by K a values three- to tenfold higher than the K m. Since NADP(H) is largely converted to NAD(H) in darkened chloroplasts Heineke et al. 1991, Plant Physiol. 95, 1131–1137, it is proposed that NAD+ promotes NAD(P)-GAPDH association into a regulatory conformer with low NADPH-activity during dark deactivation. The process is reversed in the light by BPGA and other substrate-modifiers whose concentration increases during photosynthesis, in addition to reduced thioredoxin.Abbreviations BPGA glycerate 1,3-bisphosphate - Chl chlorophyll - DTT dithiothreitol - FPLC fast protein liquid chromatography - NAD(P)-GAPDH glyceraldehyde 3-phosphate dehydrogenase, NAD(P)-dependent - 3-PGA glyerate 3-phosphate - PGK phosphoglycerate kinase - Prt protein - Tricine N-tris (hydroxymethyl) methyl-glycine This work was supported by grants from the Ministero dell'Università e della Ricerca Scientifica e Technologica in years 1990–1991. We are grateful to Dr. G. Branlant (Laboratoire d'Enzymologie et de Génie Génétique, Vandoeuvre les Nancy, France) for introducing us to the BPGA purification procedure.  相似文献   

9.
Chloroplasts isolated from spinach (Spinacia oleracea L.) leaves and green sweet-pepper (Capsicum annuum L. var. grossum (L.) Sendt.) fruits contain NADP-dependent malate dehydrogenase (MDH; EC 1.1.1.82) and the bispecific NAD(P)-glyceraldehyde 3-phosphate dehydrogenase (GAPDH; EC 1.2.1.13). The NADP-dependent MDH and GAPDH are activated in the light, and inactive in the dark. We found that chloroplasts possess additional NAD-dependent MDH activity which is, like the NAD-dependent GAPDH activity, not influenced by light. In heterotrophic chromoplasts from red sweet-pepper fruits, the NADP-dependent MDH and the NAD(P)-GAPDH isoenzymes disappear during the developmental transition and only NAD-specific isoforms are found. Spinach chloroplasts contain both NAD/H and NADP/H at significant concentrations. Measurements of the pyridine dinucleotide redox states, performed under dark and various light conditions, indicate that NAD(H) is not involved in electron flow in the light. To analyze the contribution of NAD(H)-dependent reactions during dark metabolism, plastids from spinach leaves or green and red sweet-pepper fruits were incubated with dihydroxyacetone phosphate (DHAP). Exogenously added DHAP was oxidized into 3-phosphoglycerate by all types of plastids only in the presence of oxaloacetate, but not with nitrite or in the absence of added electron acceptors. We conclude that the NAD-dependent activity of GAPDH is essential in the dark to produce the ATP required for starch metabolism; excess electrons produced during triose-phosphate oxidation can selectively be used by NAD-MDH to form malate. Thus NADPH produced independently in the oxidative pentose-phosphate pathway will remain available for reductive processes inside the plastids. Received: 2 July 1997 / Accepted: 20 October 1997  相似文献   

10.
By combining our knowledge of the crystal structure of the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the sequence of the photosynthetic NADP-dependent GAPDH of the chloroplast, two particular amino acid residues were predicted as the principal determinants of differing coenzyme specificity. By use of site-directed mutagenesis, the amino acids Leu 187 and Pro 188 of GAPDH from Bacillus stearothermophilus have been replaced with Ala 187 and Ser 188, which occur in the sequence from the chloroplast enzyme. The resulting mutant was shown to be catalytically active not only with its natural coenzyme NAD but also with NADP, thus confirming the initial hypothesis. This approach has not only enabled us to alter the coenzyme specificity by minimal amino acid changes but also revealed factors that control the relative affinity of the enzyme for NAD and NADP.  相似文献   

11.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of higher plants catalyzes an NADPH-consuming reaction, which is part of the Calvin cycle. This reaction is regulated by light via thioredoxins and metabolites, while a minor NADH-dependent activity is constant and constitutive. The major native isozyme is formed by A- and B-subunits in stoichiometric ratio (A2B2, A8B8), but tetramers of recombinant B-subunits (GapB) display similar regulatory features to A2B2-GAPDH. The C-terminal extension (CTE) of B-subunits is essential for thioredoxin-mediated regulation and NAD-induced aggregation to partially inactive oligomers (A8B8, B8). Deletion mutant B(minCTE) is redox insensitive and invariably tetrameric, and chimeric mutant A(plusCTE) acquired redox sensitivity and capacity to aggregate to very large oligomers in presence of NAD. Redox regulation principally affects the turnover number, without significantly changing the affinity for either 1,3-bisphosphoglycerate or NADPH. Mutant R77A of GapB, B(R77A), is down-regulated and mimics the behavior of oxidized GapB under any redox condition, whereas mutant B(E362Q) is constantly up-regulated, resembling reduced GapB. Despite their redox insensitivity, both B(R77A) and B(E362Q) mutants are notably prone to aggregate in presence of NAD. Based on structural data and current functional analysis, a model of GAPDH redox regulation is presented. Formation of a disulfide in the CTE induces a conformational change of the GAPDH with repositioning of the terminal amino acid Glu-362 in the proximity of Arg-77. The latter residue is thus distracted from binding the 2'-phosphate of NADP, with the final effect that the enzyme relaxes to a conformation leading to a slower NADPH-dependent catalytic activity.  相似文献   

12.
The human mitochondrial NAD(P)+-dependent malic enzyme (m-NAD-ME) is a malic enzyme isoform with dual cofactor specificity and substrate binding cooperativity. Previous kinetic studies have suggested that Lys362 in the pigeon cytosolic NADP+-dependent malic enzyme has remarkable effects on the binding of NADP+ to the enzyme and on the catalytic power of the enzyme (Kuo, C. C., Tsai, L. C., Chin, T. Y., Chang, G.-G., and Chou, W. Y. (2000) Biochem. Biophys. Res. Commun. 270, 821-825). In this study, we investigate the important role of Gln362 in the transformation of cofactor specificity from NAD+ to NADP+ in human m-NAD-ME. Our kinetic data clearly indicate that the Q362K mutant shifted its cofactor preference from NAD+ to NADP+. The Km(NADP) and kcat(NADP) values for this mutant were reduced by 4-6-fold and increased by 5-10-fold, respectively, compared with those for the wild-type enzyme. Furthermore, up to a 2-fold reduction in Km(NADP)/Km(NAD) and elevation of kcat(NADP)/kcat(NAD) were observed for the Q362K enzyme. Mutation of Gln362 to Ala or Asn did not shift its cofactor preference. The Km(NADP)/Km(NAD) and kcat(NADP)/kcat(NAD) values for Q362A and Q362N were comparable with those for the wild-type enzyme. The DeltaG values for Q362A and Q362N with either NAD+ or NADP+ were positive, indicating that substitution of Gln with Ala or Asn at position 362 brings about unfavorable cofactor binding at the active site and thus significantly reduces the catalytic efficiency. Our data also indicate that the cooperative binding of malate became insignificant in human m-NAD-ME upon mutation of Gln362 to Lys because the sigmoidal phenomenon appearing in the wild-type enzyme was much less obvious that that in Q362K. Therefore, mutation of Gln362 to Lys in human m-NAD-ME alters its kinetic properties of cofactor preference, malate binding cooperativity, and allosteric regulation by fumarate. However, the other Gln362 mutants, Q362A and Q362N, have conserved malate binding cooperativity and NAD+ specificity. In this study, we provide clear evidence that the single mutation of Gln362 to Lys in human m-NAD-ME changes it to an NADP+-dependent enzyme, which is characteristic because it is non-allosteric, non-cooperative, and NADP+-specific.  相似文献   

13.
Drosophila alcohol dehydrogenase (ADH), an NAD(+)-dependent dehydrogenase, shares little sequence similarity with horse liver ADH. However, these two enzymes do have substantial similarity in their secondary structure at the NAD(+)-binding domain [Benyajati, C., Place, A. P., Powers, D. A. & Sofer, W. (1981) Proc. Natl Acad. Sci. USA 78, 2717-2721]. Asp38, a conserved residue between Drosophila and horse liver ADH, appears to interact with the hydroxyl groups of the ribose moiety in the AMP portion of NAD+. A secondary-structure comparison between the nucleotide-binding domain of NAD(+)-dependent enzymes and that of NADP(+)-dependent enzymes also suggests that Asp38 could play an important role in cofactor specificity. Mutating Asp38 of Drosophila ADH into Asn38 decreases Km(app)NADP 62-fold and increases kcat/Km(app)NADP 590-fold at pH 9.8, when compared with wild-type ADH. These results suggest that Asp38 is in the NAD(+)-binding domain and its substituent, Asn38, allows Drosophila ADH to use both NAD+ and NADP+ as its cofactor. The observations from the experiments of thermal denaturation and kinetic measurement with pH also confirm that the repulsion between the negative charges of Asp38 and 2'-phosphate of NADP+ is the major energy barrier for NADP+ to serve as a cofactor for Drosophila ADH.  相似文献   

14.
Ferredoxin-NADP+ reductase (FNR) catalyzes the reduction of NADP+ to NADPH in an overall reversible reaction, showing some differences in the mechanisms between cyanobacterial and higher plant FNRs. During hydride transfer it is proposed that the FNR C-terminal Tyr is displaced by the nicotinamide. Thus, this C-terminal Tyr might be involved not only in modulating the flavin redox properties, as already shown, but also in nicotinamide binding and hydride transfer. FNR variants from the cyanobacterium Anabaena in which the C-terminal Tyr has been replaced by Trp, Phe, or Ser have been produced. All FNR variants show enhanced NADP+ and NAD+ binding, especially Tyr303Ser, which correlates with a noticeable improvement of NADH-dependent reactions. Nevertheless, the Tyr303Ser variant shows a decrease in the steady-state kcat value with NADPH. Fast kinetic analysis of the hydride transfer shows that the low efficiency observed for this mutant FNR under steady-state conditions is not due to a lack of catalytic ability but rather to the strong enzyme-coenzyme interaction. Three-dimensional structures for Tyr303Ser and Tyr303Trp variants and its complexes with NADP+ show significant differences between plant and cyanobacterial FNRs. Our results suggest that modulation of coenzyme affinity is highly influenced by the strength of the C-terminus-FAD interaction and that subtle changes between plant and cyanobacterial structures are able to modify the energy of that interaction. Additionally, it is shown that the C-terminal Tyr of FNR lowers the affinity for NADP+/H to levels compatible with steady-state turnover during the catalytic cycle, but it is not involved in the hydride transfer itself.  相似文献   

15.
Sheep liver 6-phosphogluconate dehydrogenase shows a high specificity for NADP, with a much lower affinity for NAD. Discrimination between NADP and NAD suggests that the interactions between the 2'-phosphate and 6-phosphogluconate dehydrogenase contribute most of the binding energy for NADP. There are three active site residues, Asn-32, Arg-33, and Thr-34, that hydrogen-bond to the 2'-phosphate of NADP according to the crystal structure of the E.Nbr(8)ADP complex. In this study alanine mutagenesis was used to probe the contribution of each of the three residues to binding the cofactor and to catalysis. All mutant enzymes exhibit no significant change in V/E(t) or K(6PG) but an increase in K(NADP) that ranges from 6- to 80-fold. All mutant enzymes also exhibit at least a 7-fold increase in the primary kinetic (13)C-isotope effect-1, indicating that the decarboxylation step has become more rate-limiting. Data are consistent with significant roles for Asn-32, Arg-33, and Thr-34 in providing binding energy for NADP, and more importantly, the 2'-phosphate of NADP is required for proper orientation of the cofactor to allow rotation about the N-glycosidic bond as it is reduced in the hydride transfer step.  相似文献   

16.
Initial-rate studies were made of the oxidation of L-glutamate by NAD+ and NADP+ catalysed by highly purified preparations of dogfish liver glutamate dehydrogenase. With NAD+ as coenzyme the kinetics show the same features of coenzyme activation as seen with the bovine liver enzyme [Engel & Dalziel (1969) Biochem. J. 115, 621--631]. With NADP+ as coenzyme, initial rates are much slower than with NAD+, and Lineweaver--Burk plots are linear over extended ranges of substrate and coenzyme concentration. Stopped-flow studies with NADP+ as coenzyme give no evidence for the accumulation of significant concentrations of NADPH-containing complexes with the enzyme in the steady state. Protection studies against inactivation by pyridoxal 5'-phosphate indicate that NAD+ and NADP+ give the same degree of protection in the presence of sodium glutarate. The results are used to deduce information about the mechanism of glutamate oxidation by the enzyme. Initial-rate studies of the reductive amination of 2-oxoglutarate by NADH and NADPH catalysed by dogfish liver glutamate dehydrogenase showed that the kinetic features of the reaction are very similar with both coenzymes, but reactions with NADH are much faster. The data show that a number of possible mechanisms for the reaction may be discarded, including the compulsory mechanism (previously proposed for the enzyme) in which the sequence of binding is NAD(P)H, NH4+ and 2-oxoglutarate. The kinetic data suggest either a rapid-equilibrium random mechanism or the compulsory mechanism with the binding sequence NH4+, NAD(P)H, 2-oxoglutarate. However, binding studies and protection studies indicate that coenzyme and 2-oxoglutarate do bind to the free enzyme.  相似文献   

17.
Peptostreptococcus asaccharolyticus glutamate dehydrogenase (L-glutamate: NAD+ oxidoreductase (deaminating); EC 1.4.1.2) overexpressed in Escherichia coli has been purified by two new methods. Enzyme made by the first method showed remarkable thermophilicity, with a temperature optimum of 60 degrees C, and also thermostability, which suggested the second, simpler method, incorporating a heat step. This produced 94 mg of homogeneous protein per litre culture medium. The basic kinetic parameters for P. asaccharolyticus glutamate dehydrogenase with all substrates are revealed at pH 7.0. The enzyme is highly specific for NAD+, with values for kcat/Km 405 times greater than for NADP+. In the reverse direction of reaction, the kcat/Km value for NADH is almost 1000-fold greater than for NADPH.  相似文献   

18.
Light modulation of chloroplast glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) has been investigated. Complete activation of NADPH-dependent activity is achieved at 25 W.m–2 photosynthetically active radiation in spinach (Spinacia oleracea L.) and 100 W.m–2 in maize (Zea mays L.) leaves. Light activation is stronger in spinach (fivefold on average) than in maize (twofold), which shows higher dark activity. The NADH dependent activity does not change appreciably. Several substrate activators can simulate in vitro the light effect with recovery of latent NADPH-dependent activity of spinach enzyme, but they are almost inactive with maize enzyme. A mixture of activators has been devised to fully activate the spinach enzyme under most conditions. The NAD(P)-GAPDH protein can be resolved by rapid gel filtration (fast protein liquid chromatography) into three conformers which have different molecular masses according to the light conditions. Enzyme from darkened leaves or chloroplasts, or dichlorophenyl-1,1-dimethylurea-treated chloroplasts is mainly a 600-kDa regulatory form with low NADPH-dependent activity relative to NADH-activity. Enzyme from spinach leaves or chloroplasts during photosynthesis is mainly a 300-kDa oligomer, which along with the 600-kDa form also occurs in leaves of darkened maize. The conformer of illuminated maize leaves is mainly a 160-kDa species. Results are consistent with a model of NAD(P)-GAPDH freely interconvertible between protomers of the 160-kDa (or 300-kDa intermediate) form with high NADPH-activity, produced in the light by the action of thioredoxin and activating metabolites (spinach only), and a regulatory 600-kDa conformer with lower NADPH-activity produced in darkness or when photosynthesis is inhibited. This behavior is reminiscent of the in-vitro properties of purified enzyme; therefore, it seems unlikely that NAD(P)-GAPDH in the chloroplast is part of a stable multienzyme complex or is bound to membranes.Abbreviations AEM activator equilibrium mixture - Chl chlorophyll - DCMU dichlorophenyl 1,1-dimethylurea - DTT dithiothreitol - FPLC fast protein liquid chromatography - NAD(P)-GAPDH glyceraldehyde 3-phosphate dehydrogenase, NAD(P)-dependent - PAR photosynthetic active radiation - PGK phosphoglycerate kinase - Tricine N-tris(hydroxy-methyl) methyl-glycine This work was supported by grants from the Ministero dell'Università e della Ricerca Seientifica e Tecnologica (40%, years 1990 and 1991).  相似文献   

19.
cDNA clones encoding NADP(+)-glyceraldehyde-3-phosphate dehydrogenase (NADP(+)-GAPDH) and sedoheptulose-1,7-bisphosphatase (SBPase) were isolated and characterized from halotolerant Chlamydomonas sp. W80 (C. W80) cells. The cDNA clone for NADP(+)-GAPDH encoded 369 amino acid residues, preceded by the chloroplast transit peptide (37 amino acid residues). The cDNA clone for SBPase encoded 351 amino acids with the chloroplast transit peptide. The activities of NADP(+)-GAPDH and SBPase from C. W80 cells were resistant to H(2)O(2) up to 1 mM, as distinct from spinach chloroplastic thiol-modulated enzymes. The illumination to the dark-adapted cells and dithiothreitol treatment to the crude homogenate had little effect on the activities of NADP(+)-GAPDH and SBPase in C. W80. Modeling of the tertiary structures of NADP(+)-GAPDH and SBPase suggests that resistance of the enzymes to H(2)O(2) in C. W80 is due to the different conformational structures in the vicinity of the Cys residues of the chloroplastic enzymes between higher plant and C. W80 cells.  相似文献   

20.
Chloroplast ferredoxin-NADP(+) reductase has a 32,000-fold preference for NADPH over NADH, consistent with its main physiological role of NADP(+) photoreduction for de novo carbohydrate biosynthesis. Although it is distant from the 2'-phosphoryl group of NADP(+), replacement of the C-terminal tyrosine (Tyr(308) in the pea enzyme) by Trp, Phe, Gly, and Ser produced enzyme forms in which the preference for NADPH over NADH was decreased about 2-, 10-, 300-, and 400-fold, respectively. Remarkably, in the case of the Y308S mutant, the k(cat) value for the NADH-dependent activity approached that of the NADPH-dependent activity of the wild-type enzyme. Furthermore, difference spectra of the NAD(+) complexes revealed that the nicotinamide ring of NAD(+) binds at nearly full occupancy in the active site of both the Y308G and Y308S mutants. These results correlate well with the k(cat) values obtained with these mutants in the NADH-ferricyanide reaction. The data presented support the hypothesis that specific recognition of the 2'-phosphate group of NADP(H) is required but not sufficient to ensure a high degree of discrimination against NAD(H) in ferredoxin-NADP(+) reductase. Thus, the C-terminal tyrosine enhances the specificity of the reductase for NADP(H) by destabilizing the interaction of a moiety common to both coenzymes, i.e. the nicotinamide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号