首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic maize plants expressing a fungal phytase gene   总被引:12,自引:0,他引:12  
Maize seeds are the major ingredient of commercial pig and poultry feed. Phosphorus in maize seeds exists predominantly in the form of phytate. Phytate phosphorus is not available to monogastric animals and phosphate supplementation is required for optimal animal growth. Undigested phytate in animal manure is considered a major source of phosphorus pollution to the environment from agricultural production. Microbial phytase produced by fermentation as a feed additive is widely used to manage the nutritional and environmental problems caused by phytate, but the approach is associated with production costs for the enzyme and requirement of special cares in feed processing and diet formulation. An alternative approach would be to produce plant seeds that contain high phytase activities. We have over-expressed Aspergillus niger phyA2 gene in maize seeds using a construct driven by the maize embryo-specific globulin-1 promoter. Low-copy-number transgenic lines with simple integration patterns were identified. Western-blot analysis showed that the maize-expressed phytase protein was smaller than that expressed in yeast, apparently due to different glycosylation. Phytase activity in transgenic maize seeds reached approximately 2,200 units per kg seed, about a 50-fold increase compared to non-transgenic maize seeds. The phytase expression was stable across four generations. The transgenic seeds germinated normally. Our results show that the phytase expression lines can be used for development of new maize hybrids to improve phosphorus availability and reduce the impact of animal production on the environment.  相似文献   

2.
Among several yeasts isolated from dried flowers of Woodfordia fruticosa, Pichia anomala produced a high titre of cell-bound phytase. The optimization of fermentation variables led to formulation of media and selection of cultural variables that supported enhanced phytase production. The enzyme productivity was very high in fed batch fermentation in air-lift fermentor as compared to that in stirred tank fermentor. Amelioration in the cell-bound phytase activity was observed when yeast cells were permeabilized with Triton-X-100. The enzyme is thermostable and acid stable with broad substrate specificity, the characteristics that are desirable for enzymes to be used in the animal feed industry. The phytase-encoding gene was cloned and sequenced. The 3D structure of the enzyme was proposed by comparative modeling using phytase of Debaryomyces occidentalis (50% sequence identity) as template. When broiler chicks, and fresh water and marine fishes were fed with the feed supplemented with yeast biomass containing phytase, improvement in growth and phosphorus retention, and decrease in the excretion of phosphorus in the faeces were recorded. The cell-bound phytase of P. anomala could effectively dephytinize wheat flour and soymilk.  相似文献   

3.
植物植酸酶及其在饲料中的应用前景   总被引:1,自引:0,他引:1  
植物植酸酶不但能分解内源植酸磷 ,对外源植酸磷同样有明显的降解作用。在饲粮中添加植酸酶活性高的植物性饲料 ,可提高猪和家禽对植酸磷的利用率 ,降低粪便中磷的排泄量 ,提高生产性能。麦类籽实中具有较高的天然植酸酶活性 ,发芽能显著提高种子中植酸酶的活性 ,因而有希望通过发芽提高麦类籽实中的植酸酶活性 ,经提纯浓缩后可达到在实际生产中应用的水平 ,从而减少在饲料中添加无机磷或价格昂贵的微生物植酸酶。  相似文献   

4.
Transglutaminase (EC 2.3.2.13) catalyses an acyl-transfer reaction in which the -carboxamide groups of peptide-bound glutaminyl residues are the acyl donors. The enzyme catalyses in vitro cross-linking in whey proteins, soya proteins, wheat proteins, beef myosin, casein and crude actomysin refined from mechanically deboned poultry meat. In recent years, on the basis of the enzyme's reaction to gelatinize various food proteins through the formation of cross-links, this enzyme has been used in attempts to improve the functional properties of foods. Up to now, commercial transglutaminase has been merely obtained from animal tissues. The complicated separation and purification procedure results in an extremely high price for the enzyme, which hampers a wide application in food processing. Recently studies on the production of transglutaminase by microorganisms have been started. The enzyme obtained from microbial fermentation has been applied in the treatment of food of different origins. Food treated with microbial transglutaminase appeared to have an improved flavour, appearance and texture. In addition, this enzyme can increase shelf-life and reduce allergenicity of certain foods. This paper gives an overview of the development of microbial transglutaminase production, including fermentation and down-stream processing, as well as examples of how to use this valuable enzyme in processing foods of meat, fish and plant origin.  相似文献   

5.
Phytase is an important feed and food additive, which is both used in animal and human diets. Phytase has been used to increase the absorption of several divalent ions, amino acids, and proteins in the bodies and to decrease the excessive phosphorus release in the manure to prevent negative effects on the environment. To date, microbial phytase has been mostly produced in solid-state fermentations with insignificant production volumes. There are only a few studies in the literature that phytase productions were performed in submerged bench-top reactor scale. In our previous studies, growth parameters (temperature, pH, and aeration) and important fermentation medium ingredients (glucose, Na-phytate, and CaSO4) were optimized. This study was undertaken for further enhancement of phytase production with Aspergillus ficuum in bench-top bioreactors by conducting fed-batch fermentations. The results showed that addition of 60 g of glucose and 10 g of Na-phytate at 96 h of fermentation increased phytase activity to 3.84 and 4.82 U/ml, respectively. Therefore, the maximum phytase activity was further enhanced with addition of glucose and Na-phytate by 11 and 40 %, respectively, as compared to batch phytase fermentations. It was also reported that phytase activity increased higher in early log stage additions than late log stage additions because of higher microbial activity. In addition, the phytase activity in fed-batch fermentation did not drop significantly as compared to the batch fermentation. Overall, this study shows that fungal phytase can be successfully produced in submerged fed-batch fermentations.  相似文献   

6.
Phytases are hydrolytic enzymes that initiate the release of phosphate from phytate (myo-inositol hexakisphosphate), the major phosphorus (P) form in animal feeds of plant origin. These enzymes can be supplemented in diets for food animals to improve P nutrition and to reduce P pollution of animal excreta. This mini-review provides a synopsis of the concept of "ideal phytase" and the biotechnological approaches for developing such an enzyme. Examples of Escherichia coli AppA and Aspergillus fumigatus PhyA are presented to illustrate how new phytases are identified from microorganisms and developed by genetic engineering based on the gene sequences and protein structures of these enzymes. We also discuss the characteristics of different heterologous phytase expression systems, including those of plants, bacteria, fungi, and yeast.  相似文献   

7.
Citric pulp is an agro-industrial residue from the citrus processing industry with low inorganic phosphorus content applied in animal feed. A new bioprocess was developed to produce and purify a new phytase generated on citric pulp fermentation by Aspergillus niger FS3. The phytase was purified by cationic-exchange, anionic-exchange chromatography and chromatofocusing steps. From SDS–PAGE analysis, the molecular weight of the purified phytase was calculated to be 108 kDa. The phytase had an optimum pH of 5.0–5.5 and an optimum temperature of 60°C. The phytase displayed high affinity for phytate, and the K m was 0.52 mM. The purified phytase was sufficiently able to withstand pelleting temperatures, retaining sufficiently high phytate-degrading activity.  相似文献   

8.
This review discusses the debittering enzyme naringinase and its essential role in the commercial processing of citrus fruit juice. Applications of this enzyme in other areas are identified. Characterization of the enzyme is detailed and its immobilized preparations are discussed. Production of microbial naringinase by fermentation is described.  相似文献   

9.
Phytase from Aspergillus niger van Teighem efficiently hydrolyses phytate phosphorus present in various commercial live stock feeds and was not inactivated by various formulations and antibiotics present. The enzyme retained 90-95% phytase activity at 55 degrees C, pH 2.5 after 72 h of incubation with all the commercial feeds tested, thus indicating its suitability in feed application. The phytase hydrolysis increased with the increase in temperature and a significant release of 41 nmols P(i)/ml in phytase-treated feed over control sample was observed at 55 degrees C after 48 h. Besides this, the enzyme was maximally effective when used under acidic condition, releasing 21 and 42 nmols P(i)/ml at pH 1.5 and 2.5, respectively. As the pH shifted towards 5.5, significant decline in phosphorus release was observed. However, the enzyme was able to retain almost complete phytase activity in the presence of feed constituent even after 48 h over various pH tested. Thus it can be a potential candidate in animal nutrition where the ability of present phytase to retain activity over period of time in the presence of feed constituent is desired.  相似文献   

10.
When fresh rice leaves producing yeast Schwanniomyces occidentalis phytase were grounded and mixed with the whole extract of seed-based feed for pigs, the release of orthophosphate increased significantly. More specifically, phytate, a major source of phosphorus in the seeds, was hydrolyzed by heterologous phytase. Moreover, when transgenic rice plants were ensiled for up to 12 weeks, no decrease in the phytase activity of the heterologous enzyme was observed. This result strongly suggests that transgenic rice plants producing yeast phytase can be stored as silage without any loss of enzyme activity until usage as a feed additive.  相似文献   

11.
Microbial phytases are widely used as feed additive to increase phytate phosphorus utilization and to reduce fecal phytates and inorganic phosphate (iP) outputs. To facilitate the process of application, we engineered an Escherichia coli appA phytase gene into the chloroplast genome of the model microalga, Chlamydomonas reinhardtii, and isolated homoplasmic plastid transformants. The catalytic activity of the recombinant E. coli AppA can be directly detected in the whole-cell lysate, termed Chlasate, prepared by freeze-drying the transgenic cell paste with liquid nitrogen. The E. coli AppA in the Chlasate has a pH and temperature optima of 4.5 and 60°C, respectively, which are similar to those described in the literature. The phytase-expressed Chlasate contains 10 phytase units per gram dry matter at pH 4.5 and 37°C. Using this transgenic Chlasate at 500 U/kg of diet for young broiler chicks, the fecal phytate excretion was reduced, and the iP was increased by 43% and 41%, respectively, as compared to those of the chicks fed with only the basal diet. The effectiveness of the Chlasate to break down the dietary phytates is compatible with the commercial Natuphos fungal phytase. Our data provide the first evidence of functional expression of microbial phytase in microalgae and demonstrate the proof of concept of using transgenic microalgae as a food additive to deliver dietary enzymes with no need of protein purification.  相似文献   

12.
Microbial phytase is used to reduce the environmental loading of phosphorus from animal production facilities. The limiting factors in the use of this enzyme in animal feeds can be overcome by solid-state fermentation (SSF), which is a promising technology for commercial enzyme production with lower production costs. Inoculum quality and the influence of inoculum quality on phytase production are important factors which need in-depth investigation before scaling-up of high-yielding fermentation process. A full factorial experimental design for 240 h with sampling at every 24 h was used to determine the effects of the treatments, inoculum age (plate and liquid culture), media composition and the duration of SSF on the production of fungal biomass and phytase in SSF systems using Aspergillus niger. The optimal treatment combination for maximal phytase production was determined by statistically comparing all treatments at each sampling time. Both 7- and 14-day plate cultures and M1+ medium composition with 72-h-old liquid inoculum treatments resulted in optimal phytase production at 144 h of SSF, which was the shortest duration observed for maximal phytase production. This resulted in maximal phytase production with a mean of 884±121 U/g substrate, while the maximal phytase production observed at 216 h of SSF (mean phytase activity of 1008±121 U/g substrate), with the same treatment combinations, was not statistically significant from that at 144 h of SSF. Phytase production was strongly growth-associated with younger inocula. The significant treatment variables, age of liquid inoculum and the duration of SSF, were used to predict the system response for phytase production using response surface methodology. From the response surface model, the optimal response of the experiment was predicted and the reliability of the prediction was checked with the verification experiment. Journal of Industrial Microbiology & Biotechnology (2001) 26, 161–170. Received 06 June 2000/ Accepted in revised form 14 October 2000  相似文献   

13.
转基因植物表达植酸酶研究进展   总被引:6,自引:0,他引:6  
植酸是植物体内磷的主要存在形式,其绝大部分不能被单胃动物消化吸收,而随粪便排出体外造成环境污染;同时,植酸又是一种抗营养因子,它通过络合植物体内的一些营养成分而降低植物的营养价值。通过植物转基因方法使植物自身表达足量的植酸酶,以减小植酸带来的不利影响,是提高植物性饲料营养价值和控制环境磷污染的一种经济有效的措施。就转基因植物植酸酶的优势、研究现状、存在的问题及其发展前景进行了综述。  相似文献   

14.
When fresh rice leaves producing yeast Schwanniomyces occidentalis phytase were grounded and mixed with the whole extract of seed-based feed for pigs, the release of orthophosphate increased significantly. More specifically, phytate, a major source of phosphorus in the seeds, was hydrolyzed by heterologous phytase. Moreover, when transgenic rice plants were ensiled for up to 12 weeks, no decrease in the phytase activity of the heterologous enzyme was observed. This result strongly suggests that transgenic rice plants producing yeast phytase can be stored as silage without any loss of enzyme activity until usage as a feed additive.  相似文献   

15.
AIMS: To screen micro-organisms for the ability to produce phytase enzyme(s) and to use promising strains for the fermentation of pea flour. METHODS AND RESULTS: Two methods using the indirect estimation of phytate degradation were evaluated and both shown to be inadequate. A third method, measuring the inositol phosphate (IP3-IP6) content directly during fermentation, was used instead of the indirect estimations of phytate degradation. In synthetic media, some strains required customized conditions, with no accessible phosphorus sources other than phytate, to express phytase activity. The repression of phytase synthesis by inorganic phosphorus was not detected during fermentation with pea flour as substrate and seemed to be less significant with a higher composition complexity of the substrate. None of the tested lactic acid bacteria strains showed phytase activity. CONCLUSIONS: The methodology for the phytase screening procedure was shown to be critical. Some of the screening methods and media used in previous publications were found to be inadequate. SIGNIFICANCE AND IMPACT OF THE STUDY: This paper highlights the pitfalls and difficulties in the evaluation of phytase production by micro-organisms. The study is of great importance for future studies in this area.  相似文献   

16.
Combination of statistical optimization and mutagenesis to isolate hypersecretory strains is studied to maximize phytase production from Aspergillus niger NCIM 563 under submerged fermentation. The overall results obtained show a remarkable 5.98-fold improvement in phytase production rates when compared to that using basal medium. Optimization of culture conditions from parent strain is studied first by the Plackett–Burman technique to evaluate the effects of 11 variables for phytase production. The results showed that glucose, MgSO4, KCl, incubation period, and MnSO4 are the most significant variables affecting enzyme production. Further optimization in these variables, using a central composite design technique, resulted in 3.74-fold increase in the yield of phytase production to 254,500 U/l when compared with the activity observed with basal media (68,000 U/l) in shake flask. Our experiments show that the phytase from A. niger NCIM 563 exhibits desirable activity in simulated gastric fluid conditions with low pH and also improved thermostability when compared to commercial phytase. The improved yield demonstrates the potential applicability of phytase enzyme as a source of phytase supplement for phosphorus nutrition and environmental protection in animal feed industry. Physical and chemical mutagenesis experiments were carried out in parallel to isolate hypersecretory mutants that could possibly further enhance the enzyme production. Using optimized media conditions of the parent strain, our results show that mutant strain A. niger NCIM 1359 increased the phytase activity by another 1.6-fold to 407,200 U/l.  相似文献   

17.
Transgenic plants offer advantages for biomolecule production because plants can be grown on a large scale and the recombinant macromolecules can be easily harvested and extracted. We introduced an Aspergillus phytase gene into canola (Brassica napus) (line 9412 with low erucic acid and low glucosinolates) by Agrobacterium-mediated transformation. Phytase expression in transgenic plant was enhanced with a synthetic phytase gene according to the Brassica codon usage and an endoplasmic reticulum (ER) retention signal KDEL that confers an ER accumulation of the recombinant phytase. Secretion of the phytase to the extracellular fluid was also established by the use of the tobacco PR-S signal peptide. Phytase accumulation in mature seed accounted for 2.6% of the total soluble proteins. The enzyme can be glycosylated in the seeds of transgenic plants and retain a high stability during storage. These results suggest a commercial feasibility of producing a stable recombinant phytase in canola at a high level for animal feed supplement and for reducing phosphorus eutrophication problems.  相似文献   

18.
Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals and reduces phosphorus pollution of animal waste. Our objectives were to express an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae and to determine the effects of glycosylation on the phytase's activity and thermostability. A 1.4-kb DNA fragment containing the coding region of the phyA gene was inserted into the expression vector pYES2 and was expressed in S. cerevisiae as an active, extracellular phytase. The yield of total extracellular phytase activity was affected by the signal peptide and the medium composition. The expressed phytase had two pH optima (2 to 2.5 and 5 to 5.5) and a temperature optimum between 55 and 60 degrees C, and it cross-reacted with a rabbit polyclonal antibody against the wild-type enzyme. Due to the heavy glycosylation, the expressed phytase had a molecular size of approximately 120 kDa and appeared to be more thermostable than the commercial enzyme. Deglycosylation of the phytase resulted in losses of 9% of its activity and 40% of its thermostability. The recombinant phytase was effective in hydrolyzing phytate phosphorus from corn or soybean meal in vitro. In conclusion, the phyA gene was expressed as an active, extracellular phytase in S. cerevisiae, and its thermostability was affected by glycosylation.  相似文献   

19.
To maintain the sustainability of agriculture, it is imperative that the reliance of crops on inorganic phosphorus (P) fertilizers is reduced. One approach is to improve the ability of crop plants to acquire P from organic sources. Transgenic plants that produce microbial phytases have been suggested as a possible means to achieve this goal. However, neither the impact of heterologous expression of phytase on the ecology of microorganisms in the rhizosphere nor the impact of rhizosphere microorganisms on the efficacy of phytases in the rhizosphere of transgenic plants has been tested. In this paper, we demonstrate that the presence of rhizosphere microorganisms reduced the dependence of plants on extracellular secretion of phytase from roots when grown in a P-deficient soil. Despite this, the expression of phytase in transgenic plants had little or no impact on the microbial community structure as compared with control plant lines, whereas soil treatments, such as the addition of inorganic P, had large effects. The results demonstrate that soil microorganisms are explicitly involved in the availability of P to plants and that the microbial community in the rhizosphere appears to be resistant to the impacts of single-gene changes in plants designed to alter rhizosphere biochemistry and nutrient cycling.  相似文献   

20.
Mineral deficiencies, especially of iron, zinc, and calcium, respectively, negatively affect human health and may lead to conditions such as iron deficiency anemia, rickets, osteoporosis, and diseases of the immune system. Cereal grains and legumes are of global importance in nutrition of monogastrics (humans and the respective domestic animals) and provide high amounts of several minerals, e.g., iron, zinc, and calcium. Nevertheless, their bioavailability is low. Plants contain phytates, the salts of phytic acid, chemically known as inositol-hexakisphosphate, which interact with several minerals and proteins. However, phytate may be hydrolysed by phytase. This enzyme is naturally present in plants and also widely distributed in microorganisms. Several food processing methods have been reported to enhance phytate hydrolysis, due to the activation of endogenous phytase activity or via the enzyme produced by microbes. In recent years, fermentation for food and feed improvement and preservation, respectively, has gained increasing interest as a promising method to degrade phytate and enhance mineral utilization in monogastrics. Indeed, several in vitro as well as in vivo studies confirm a positive effect on the utilization of minerals, such as P, Ca, Fe and Zn, using sourdough fermentation for baking or fermentation of legumes, mainly soybeans. This review summarizes the current knowledge regarding the potential of fermentation to enhance macro and trace element bioavailability in monogastric species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号