首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
王娟  李德全 《植物学报》2001,18(4):459-465
本文介绍逆境胁迫下植物体内渗透调节物质的积累和作用,及其对活性氧的产生与清除的影响。阐述以脯氨酸为代表的渗透调节物质对活性氧的直接清除作用,Ca2+、甜菜碱等对抗氧化酶活性及抗氧化剂含量的影响。近年来人们广泛利用转基因技术合成脯氨酸、甜菜碱,为提高作物的抗氧化能力及培育抗逆新品种提供了一条有效途径。  相似文献   

2.
采用营养液砂培方法,研究了不同浓度NaCl胁迫(0、50、100、150、200和250mmol·L-1)对“定莜6号”燕麦幼苗生长、活性氧代谢和渗透调节物质含量的影响.结果表明:NaCl胁迫显著抑制燕麦幼苗的生长,抑制程度随NaCl浓度提高而增强,燕麦可耐受的最高NaCl浓度约为150 mmol·L-1;随着NaCl浓度的增加,叶片O2-产生速率、H2O2和丙二醛含量明显增加,超氧化物歧化酶、过氧化物酶和抗坏血酸过氧化物酶活性先升后降,过氧化氢酶活性迅速下降后逐渐升高,NaCl胁迫明显降低了谷胱甘肽含量,而抗坏血酸含量变化不大;NaCl胁迫显著提高了叶片脯氨酸含量,Na+含量随着NaCl浓度增加不断提高,K+含量和K+/Na+逐渐下降,质膜H+-ATP酶活性、总可溶性蛋白、热稳定蛋白和热不稳定蛋白含量先升后降,游离氨基酸含量先降后升,可溶性糖含量呈降-升-降趋势变化;盐胁迫下活性氧代谢失调和Na+、K+平衡破坏及积累有机溶质进行渗透调节时更多能量的消耗可能是燕麦生长受抑的重要因素.  相似文献   

3.
活性氧(reactive oxygen species, ROS)在植物生长发育中扮演着十分重要的角色。适当浓度的ROS是植物所必需的,而在逆境胁迫下ROS会大量积累,从而抑制植物的生长发育甚至杀死植物。为了维持体内ROS的动态平衡,植物进化出了一系列的ROS产生及清除机制。本文对近年来植物在逆境下的ROS产生、清除及其调节机制的研究进展予以综述,重点介绍转录及翻译后水平的ROS清除及其调节机制,并对植物ROS代谢及调控机理的研究提出了进一步展望。  相似文献   

4.
盐胁迫对西瓜幼苗活性氧代谢和渗透调节物质含量的影响   总被引:5,自引:0,他引:5  
采用营养液培养法,以耐盐性较强的'秀雅'和耐盐性较弱的'秀丽'西瓜品种为材料,研究了不同浓度NaCl胁迫对两品种西瓜幼苗活性氧代谢和渗调物质含量的影响.结果显示:NaCl胁迫抑制了西瓜幼苗的生长,耐盐性较强的'秀雅'受抑制程度明显小于耐盐性较弱的'秀丽';随NaCl浓度提高,叶片O(-)/(·)2产生速率、MDA含量和质膜相对透性显著增加,'秀丽'的增加幅度明显大于'秀雅';POD活性在低浓度NaCl下降低而高浓度下升高,CAT和APX活性及抗坏血酸含量随NaCl浓度提高而显著增加,SOD活性随NaCl浓度变化的规律两品种有所不同;脯氨酸、可溶性糖含量随NaCl浓度提高而显著增加,可溶性蛋白含量在较低浓度NaCl下增加而高浓度下降低;除可溶性蛋白外,50 mmol·L-1以上NaCl胁迫下'秀雅'抗氧化酶活性、抗坏血酸和渗调物质含量均明显高于'秀丽'.研究表明:NaCl胁迫严重抑制了西瓜幼苗的生长,破坏了幼苗细胞膜结构,影响了活性氧和渗调物质的正常代谢,耐盐性较强的'秀雅'受抑制程度和脂质过氧化程度较低,与其抗氧化酶活性和渗调物质含量较高密切相关.  相似文献   

5.
混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响   总被引:6,自引:0,他引:6  
为研究青山杨(Populus pseudo-cathayana × P. deltoides)对盐碱的适应能力,对青山杨2年生扦插苗进行不同盐度和碱度的28组胁迫处理.结果表明:随盐浓度增加,青山杨叶片的电解质外渗率、丙二醛和脯氨酸含量呈上升趋势,可溶性糖、SOD和POD活性先升后降.pH值升高使电解质外渗率、丙二醛和POD活性呈上升趋势,脯氨酸和可溶性糖含量先升后降,SOD活性上升趋势不明显.盐浓度低于100 mmol·L-1时,随pH值升高,各项生理指标的变化不明显,SOD具有较高的活性;盐浓度在200 mmol·L-1、pH 8.99以上时,其电解质外渗率在50%以上,POD活性和丙二醛含量大幅度增加,脯氨酸和可溶性糖含量下降,SOD活性较低.推断盐浓度>200 mmol·L-1、pH>8.99的盐碱条件不适宜青山杨的生长.  相似文献   

6.
植物生长在自然环境中,不可避免地会遭到各种逆境因子的胁迫,如病虫害、干旱、盐渍、寒冷、热、涝、紫外线、重金属离子等。在长期的进化过程中,植物逐渐形成了抵御各种逆境的形态生理结构。除此之外,在遭受逆境因子袭击时,植物体会迅速作出反应,启动相关基因,合成一些具有保护作用的物质,包括各种逆激蛋白、植物激素以及一些小分子有机物。这些物质在正常环境中含量甚微,逆境时则大量合成,使生活在逆境中的植物尽量减少伤害,渡过不良环境。1 植物抗病反应中物质的合成真菌、细菌、病毒、寄生虫等病原物侵染植物后,植物会出现过敏反应,继而…  相似文献   

7.
一氧化氮对渗透胁迫下小麦种子萌发及其活性氧代谢的影响   总被引:37,自引:1,他引:37  
一氧化氮供体硝普钠(Sodium nitroprusside,SNP)能明显地促进渗透胁迫下小麦(Triticum aestivum L.)种子萌发、胚根和胚芽伸长,提高萌发过程中淀粉酶和内肽酶的活力,加速贮藏物质的降解:胁迫解除后,仍能使种子维持较高的活力。此外,SNP还能显著诱导渗透胁迫下CAT、APX活力的上升和脯氨酸含量积累,抑制LOX活力,从而提高渗透胁迫下小麦种子萌发过程中抗氧化能力。进一步研究还发现,SNP诱导切胚半粒小麦种子萌发早期(6h)的淀粉酶活力上升可能与GA3无直接关系。  相似文献   

8.
胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展   总被引:2,自引:0,他引:2  
赵福庚  刘友良 《植物学报》1999,16(5):540-546
概述胁迫处理对Pro代谢调节机理的研究近况,从分子水平上分析了胁迫下Pro积累的原因,初步提出Pro与多胺的相互关系。  相似文献   

9.
胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展   总被引:72,自引:0,他引:72  
概述胁迫处理对Pro 代谢调节机理的研究近况,从分子水平上分析了胁迫下Pro 积累的原因,初步提出Pro 与多胺的相互关系  相似文献   

10.
为了探讨牧草对碱胁迫的耐受程度,采用营养液砂培方法,研究了不同浓度NaHCO3(0、50、100、150和200 mmol·L-1)胁迫对黑麦草幼苗根系生长、活性氧代谢和渗透溶质积累的影响。结果表明:NaHCO3胁迫显著抑制黑麦草幼苗根系的生长,其抑制程度随胁迫浓度提高而增强,黑麦草可耐受的最高NaHCO3浓度约为150 mmol·L-1。随着NaHCO3胁迫浓度的增加,黑麦草根中超氧阴离子(O2)、过氧化氢(H2O2)和丙二醛(MDA)含量明显上升,超氧化物歧化酶(SOD)活性和谷胱甘肽(GSH)含量显著下降,过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性及抗坏血酸(ASA)含量先升后降。黑麦草根中Na+含量随NaHCO3浓度增大而增加,K+含量和K+/Na+比降低,可溶性糖含量先升后降,脯氨酸含量则先降后升,游离氨基酸含量呈先升后降再升高变化。表明碱胁迫导致的活性氧代谢失调和Na+、K+失衡及积累有机溶质进行渗透调节时更多能量的消耗可能是黑麦草根系生长受抑的重要因素。  相似文献   

11.
干旱胁迫对小麦幼苗抗氰呼吸和活性氧代谢的影响   总被引:8,自引:0,他引:8  
研究了干旱胁迫对抗旱性强弱不同的两种小麦幼苗的抗氰呼吸和活性氧代谢的影响。干旱胁迫导致了两种小麦抗氰呼吸活性及基因转录水平的下降,但抗旱品种在轻度干旱胁迫下表现出一定的适应能力,其抗氰呼吸活性及基因转录水平均高于不抗旱品种。干旱胁迫下,对干旱敏感的小麦幼苗叶片中活性氧含量高于抗旱小麦;3种抗氧化酶的活性低于抗旱小麦的3种抗氧化酶的活性。据此认为,严重的干旱胁迫引起活性氧含量的增加扰动了活性氧与抗氰呼吸之间的应答平衡,但抗氰呼吸可能通过清除活性氧等机制而起了抗旱的作用。  相似文献   

12.
夜间低温胁迫对番茄叶片活性氧代谢及AsA-GSH循环的影响   总被引:3,自引:0,他引:3  
以番茄品种‘辽园多丽’为试材,利用人工气候室模拟设施生产中的夜间低温胁迫环境,研究9℃和6℃夜低温对番茄叶片活性氧代谢和AsA-GSH循环的影响。结果显示:9℃和6℃夜间低温胁迫3~9d可诱导番茄叶片中超氧阴离子(O2.-)产生速率、过氧化氢(H2O2)和丙二醛(MDA)含量上升;抑制过氧化物酶(POD)、过氧化氢酶(CAT)的活性,增加超氧化物歧化酶(SOD)和AsA-GSH循环中抗坏血酸过氧化物酶(APX)、脱氢抗坏血酸还原酶(DHAR)、谷胱甘肽还原酶(GR)的活性,并提高还原型抗坏血酸(AsA)、还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)的含量。研究表明,在夜间低温胁迫过程中,增加的番茄叶片中SOD活性和AsA-GSH循环清除活性氧的能力并未与氧还原的速率一致,从而导致番茄叶片中活性氧的累积,使细胞膜系统受到一定破坏,在6℃处理的植物中尤为明显。  相似文献   

13.
燕麦叶片衰老与活性氧代谢的关系   总被引:15,自引:0,他引:15  
燕麦连体叶片与高体叶片衰老中,过氧化氢酶和超氧物歧化酶(SOD)活性下降,脂类过氧化产物丙二醛(MDA)迅速积累,组织自动氧化速率显著加快。植物激素BA,GA_3,2,4—D及光、亚胺环己酮(CH),EDTA处理均不同程度地延缓离体叶片的衰老过程,同时抑制过氧化氢酶和SOD活性下降,阻止MDA的积累和组织自动氧化速率的提高.推测叶片衰老中活性氧起着重要的作用。  相似文献   

14.
为探讨红沙枇杷与白沙枇杷冷藏耐储性差异的原因,为枇杷采后生理和保鲜技术研究提供参考,以白沙枇杷"白玉"和红沙枇杷"鸡蛋红"为材料,在6℃的冷藏条件下,测定了果皮中氧自由基产生速率(oxygenfree radical production rate, SPR)、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)等保护酶活性,以及膜脂过氧化伤害产物(MDA)的含量等活性氧(reactive oxygen species, ROS)代谢相关指标的变化规律。表明,随着冷藏的进程,冷藏的前10 d,红沙枇杷果皮SPR高于白沙枇杷,10 d后红沙枇杷果皮SPR有所下降而白沙枇杷果皮则大幅上升,导致10 d后红沙枇杷果皮SPR低于白沙枇杷;冷藏后红沙枇杷果皮ROS相关酶(SOD, POD和CAT)活性高于白沙枇杷果皮,即其ROS清除能力高于白沙枇杷果皮;在冷藏5 d后白沙枇杷果皮膜脂过氧化伤害产物MDA含量持续上升,而红沙枇杷果皮则维持在较低水平并低于白沙枇杷果皮,说明白沙枇杷果皮膜脂过氧化程度较高。分析认为冷藏初期红沙枇杷果皮较高的氧自由基产生速率激活了ROS清除系统,导致红沙枇杷果皮具有更高的ROS清除能力;冷藏后期白沙枇杷果皮则出现了氧自由基和MDA的积累,暗示其膜脂过氧化的发生和果实内外环境的恶化。红沙枇杷和白沙枇杷果皮ROS代谢的差异与冷藏耐储性相关。  相似文献   

15.
安钰  沈应柏 《西北植物学报》2011,31(9):1823-1827
以1年生合作杨扦插苗为材料,研究了叶面喷施Ca2+通道阻断剂氯化镧(LaCl3)和Ca2+螯合剂EGTA预处理对机械损伤胁迫下合作杨叶片抗氧化酶活性、过氧化氢(H2O2)和丙二醛(MDA)含量以及氧自由基(O2?-)产生速率的影响.结果显示,与对照相比,机械损伤胁迫下合作杨叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)等抗氧化酶活性均显著升高,活性氧水平和MDA含量显著增加;外源喷施EGTA和LaCl3降低了机械损伤胁迫下叶片SOD、POD、CAT和APX活性,减缓了O2?-产生速率,H2O2含量和MDA含量显著下降;且EGTA的抑制作用比LaCl3更强.研究表明,机械损伤胁迫诱导的活性氧代谢需要Ca2+的参与,Ca2+和活性氧在植物防御信号传递过程中密切相关;伤害诱导胞外Ca2+内流是胞内Ca2+浓度增加的重要来源.  相似文献   

16.
植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展   总被引:1,自引:0,他引:1  
植物果聚糖是一类重要的碳水化合物和渗透调节物质,可以提高植物的抗逆性。目前对植物果聚糖代谢酶基因的研究较多,主要包括相关基因的克隆、表达和利用基因工程技术将果聚糖相关代谢基因转入植物中。该文主要介绍了果聚糖的分布、种类、代谢途径及相关基因的克隆和表达,重点阐述了果聚糖在植物抗逆中的作用及其分子生物学研究进展。  相似文献   

17.
蛋白尿不仅反映肾小球损伤,而且是一个独立的导致肾脏病变进展的主要因素,任何能够使蛋白尿减少的治疗干预都有利于减慢肾脏疾病的进展,遗传性蛋白尿性肾病是由于基因突变所致,获得性肾病大量蛋白尿成因目前尚未阐明。免疫异常,炎症介质及氧化应激反应均可导致肾损伤。氧自由基是肾损伤的主要介质,它作为强氧化剂是造成蛋白尿的重要原因之一。活性氧分子(ROS)可以通过降解肾小球乙酰肝素硫酸盐、肾小球基底膜Ⅳ型胶原富含赖氨酸的NCl区域发生交联、损伤足细胞破坏肾小球滤过屏障及与其他活性因子作用增强血清蛋白的渗透性等作用,造成蛋白尿。本文就近年来人们对活性氧造成蛋白尿的机制的研究做一综述,便于帮助医务工作者更好的了解和治疗蛋白尿性肾病。  相似文献   

18.
用DArg+ MGBG 处理保持系, 降低花粉可育度, 并使其幼穗中蛋白质、DNA 和RNA含量以及蛋白酶、RNA 酶和DNA 酶活性下降,使O-·2 生成速率和MDA 含量上升。Put+ Spd + Spm 可消除或部分消除DArg +MGBG的上述效应( 对酶活性的影响除外) 。DArg + MGBG 也使POD、SOD 和CAT活性上升, 但是,多胺只能降低抑制剂对POD 的刺激作用。用Put+ Spd + Spm 处理不育系, 使花粉可育度轻度提高, 并使其幼穗蛋白质、DNA和RNA 含量略有上升,使蛋白酶、DNA酶和RNA 酶活性、O-·2 生成速率、MDA 含量、SOD 和CAT活性下降, 使POD 活性上升  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号