首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Typically, animals spend a considerable portion of their time with social interactions involving mates, offspring, competitors and group members. The social performance during these interactions can strongly depend on the social environment individuals have experienced early in life. Despite a considerable number of experiments investigating long‐term effects of the early social environment, our understanding of the behavioural mechanisms mediating these effects is still limited, mainly for two reasons. (1) Only in few experimental studies have researchers actually observed and quantified the behaviour of their study animals during the social treatment. (2) Even if differences in social interactions between social rearing treatments are reported, these differences might not be causally linked to any observed long‐term effects later in life. The aim of this review was to investigate whether behavioural records of animals during the experimental manipulation of their social environment can help (1) identifying behavioural mechanisms involved in a long‐term effect and (2) obtaining a better understanding of the long‐term consequences of early manipulations. First, I review studies that manipulated the social environment at an early stage of the ontogeny, observed the social interactions and behaviour during the social experience phase and subsequently tested the performance in social and non‐social behavioural tasks at a later life stage. In all reviewed studies, treatment differences were reported both in social interactions during the social experience phase and in social and/or non‐social behaviours later in life. Second, I discuss four classes of behavioural mechanisms that can cause the reported long‐term effects of social experience, namely learning by experience, social learning, sensory stimulation and social cueing. I conclude that social interactions during the social experience phase should always be recorded for at least two reasons. Knowledge about how the social interactions differ between rearing treatments (1) permits researchers to formulate hypotheses about candidate mechanisms causing long‐term effects on behaviour and (2) can help to interpret unexpected outcomes of developmental experiments. Finally, I propose that as a crucial ultimate step towards understanding effects of the early social environment, we should develop targeted experiments testing for the causality of identified candidate mechanism.  相似文献   

2.
Social plasticity is a ubiquitous feature of animal behaviour. Animals must adjust the expression of their social behaviour to the nuances of daily social life and to the transitions between life‐history stages, and the ability to do so affects their Darwinian fitness. Here, an integrative framework is proposed for understanding the proximate mechanisms and ultimate consequences of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of the neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different brain genomic and epigenetic states correspond to different behavioural responses and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. At the evolutionary scale, social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. In cases when social plasticity is too costly or incomplete, behavioural consistency can emerge by directional selection that recruits gene modules corresponding to favoured behavioural states in that environment. As a result of this integrative approach, how knowledge of the proximate mechanisms underlying social plasticity is crucial to understanding its costs, limits and evolutionary consequences is shown, thereby highlighting the fact that proximate mechanisms contribute to the dynamics of selection. The role of teleosts as a premier model to study social plasticity is also highlighted, given the diversity and plasticity that this group exhibits in terms of social behaviour. Finally, the proposed integrative framework to social plasticity also illustrates how reciprocal causation analysis of biological phenomena (i.e. considering the interaction between proximate factors and evolutionary explanations) can be a more useful approach than the traditional proximate–ultimate dichotomy, according to which evolutionary processes can be understood without knowledge on proximate causes, thereby black‐boxing developmental and physiological mechanisms.  相似文献   

3.
Acidification of lakes and rivers, as a consequence of anthropogenic interference, can cause fundamental changes to biological and ecological processes. One of the main consequences of a reduction in water pH for aquatic organisms is the disruption of their chemosensory abilities, as the detection of chemical cues underpins a wide range of decision‐making processes; for example, a reduction to low pH has been shown to interfere with predator avoidance and the detection of foraging cues. Moreover, aquatic organisms are known to make widespread use of chemical information to inform their social behaviour, although we have a comparably poor understanding of how this is impacted by water acidification, especially their shoaling behaviour. Using a standard behavioural assay, we therefore investigated the impact of low water pH on the social interactions mediated by diet‐derived chemical cues in three‐spined sticklebacks (Gasterosteus aculeatus), by quantifying social behaviour in water that varied either experimentally or naturally in pH. In both cases, we predicted that association patterns would be disrupted by low pH conditions, as reduced pH has shown to interfere with the perception of chemical cues in other non‐social contexts. Consistent with this prediction, our results demonstrate that an acute, short‐term reduction in water pH caused a breakdown in the diet‐mediated social interaction patterns seen in more alkaline water, although, interestingly, the pattern of associations for fish tested in naturally acidic water was both more complex and in a direction that was precisely contrary to our predictions. Overall, the findings provide insights into the potential effects of an acute reduction in water pH on fish communication and social interaction patterns, which may have implication for various individual, group, population and community‐level processes.  相似文献   

4.
The study of social behaviour within groups has relied on fixed definitions of an ‘interaction’. Criteria used in these definitions often involve a subjectively defined cut-off value for proximity, orientation and time (e.g. courtship, aggression and social interaction networks) and the same numerical values for these criteria are applied to all of the treatment groups within an experiment. One universal definition of an interaction could misidentify interactions within groups that differ in life histories, study treatments and/or genetic mutations. Here, we present an automated method for determining the values of interaction criteria using a pre-defined rule set rather than pre-defined values. We use this approach and show changing social behaviours in different manipulations of Drosophila melanogaster. We also show that chemosensory cues are an important modality of social spacing and interaction. This method will allow a more robust analysis of the properties of interacting groups, while helping us understand how specific groups regulate their social interaction space.  相似文献   

5.
The social niche specialization hypothesis predicts that repeated social interactions will generate social niches within groups, thereby promoting consistent individual differences in behaviour. Current support for this hypothesis is mixed, probably because the importance of social niches is dependent upon the ecology of the species. We test whether repeated interactions among group mates generate consistent individual differences in boldness in the social spider, Stegodyphus dumicola. In support of the social niche specialization hypothesis, we found that consistent individual differences in boldness increased with longer group tenure. Interestingly, these differences took longer to appear than in previous work suggesting this species needs more persistent social interactions to shape its behaviour. Recently disturbed colonies were shyer than older colonies, possibly reflecting differences in predation risk. Our study emphasizes the importance of the social environment in generating animal personalities, but also suggests that the pattern of personality development can depend on subtle differences in species'' ecologies.  相似文献   

6.
While there are now a number of theoretical models predicting how consistent individual differences in behaviour may be generated and maintained, so far, there are few empirical tests. The social niche specialization hypothesis predicts that repeated social interactions among individuals may generate among-individual differences and reinforce within-individual consistency through positive feedback mechanisms. Here, we test this hypothesis using groups of the social spider Stegodyphus mimosarum that differ in their level of familiarity. In support of the social niche specialization hypothesis, individuals in groups of spiders that were more familiar with each other showed greater repeatable among-individual variation in behaviour. Additionally, individuals that were more familiar with each other exhibited lower within-individual variation in behaviour, providing one of the first examples of how the social environment can influence behavioural consistency. Our study demonstrates the potential for the social environment to generate and reinforce consistent individual differences in behaviour and provides a potentially general mechanism to explain this type of behavioural variation in animals with stable social groups.  相似文献   

7.
8.
Schooling and aggression in fish are known to be partially inherited traits. Their genetic relationship to growth rate and to each other is, however, not fully understood. In this study we present evidence that schooling, social tolerance, and agonistic behavior in medaka (Oryzias latipes) are altered as an indirect result of selection on growth in two environments that differed in the intensity of social interactions required to obtain access to food. In the high interaction environment food was provided to excess inside a floating cork ring, which limited access to the food and allowed fish to attempt to monopolize it. In the low interaction environment the same amount of food was spread over the container's surface. After two generations of selection on growth the correlation of agonistic behavior and mean growth of broods was negative in the line selected for fast growth, when selection took place in a high interaction environment, but not when it took place in a low interaction environment. School cohesion was higher in the lines selected for fast growth than in those selected for slow growth when selection and rearing environments were both the same, either high or low interaction, but not when they were different. The correlation of social tolerance with growth was significantly more positive in the line selected for fast growth than in that selected for slow growth, but only when selection took place under high social interaction. It appears from these experiments that when resources are aggregated, but unlimited in quantity, competition favors individuals that avoid wasting time and energy on unnecessary and ultimately futile attempts to monopolize food and that also exhibit higher tolerance of nearby conspecifics. The results are interpreted in terms of a hypothesized stimulus-response threshold level for agonistic responses to conspecifics. We suggest that this threshold, which is altered by selection on growth, could provide a common causal (genetic) link between growth and the observed aspects of social behavior. By combining the probabilities from the separate behavioral experiments to obtain an overall significance of our hypothesis we conclude that the probability of no change in threshold is in fact low (P < 0.01).  相似文献   

9.
In this study on Java macaques themain characteristics of the mother-infant relationship during infants' first 10 days have been elaborated. Early mother and infant behaviour is described and early interactions between mothers and their young have been analyzed. Observations and trend analyses of early behaviours like ventro-ventral contact behaviour, being on nipple, and explorative behaviour, make it clear that Java macaque infants play an important role in the early development of mother-infant interactions. In contrast to the rhesus and the stumptailed infant, the young Java macaque appears to develop a great variety of behaviours in its first 10 days. Whereas the infant's behaviour gains in complexity and social initiative, the mother becomes increasingly more passive and self-oriented. Early mother-infant interaction can be characterized by mutual adjustment.  相似文献   

10.
Many social species with relatively simple societies have dominance hierarchies of individuals, with dominant individuals achieving fitness and subordinate individuals either queuing to obtain fitness or achieving only indirect fitness by helping relatives. Assessing the dominance hierarchy in a social group is generally based upon observing dyadic interactions as and when they occur spontaneously within the whole‐group setting. However, this method can be very time‐consuming because many dyads interact only very rarely, necessitating either extremely long observation periods or many dyadic relationships being unresolved. Here, we report an alternative method using the queenless dinosaur ant Dinoponera quadriceps, which lives in colonies containing tens of individuals. We removed all individuals from their nest and observed the dominance behaviours expressed in isolated dyadic interactions for every pairwise combination of individuals. Individuals showed a classic dominance behaviour in this setting, and the rapid nature of the assay allowed us to observe every dyadic relationship on a weekly basis over 4 weeks. The dominance hierarchies based on these isolated dyadic interactions correlated well with those produced by the conventional method of colony observations. They showed the hierarchies to be highly linear and stable, and also revealed that dominance relationships may extend further down the hierarchy than previously thought. Although highly manipulative, the isolated dyadic interaction method works well and will likely make more feasible the study of other social species in which pairs of individuals can be isolated together.  相似文献   

11.
The early social environment can have substantial, lifelong effects on vertebrate social behaviour, which can be mediated by developmental plasticity of brain gene expression. Early‐life effects can influence immediate behavioural responses towards later‐life social challenges and can activate different gene expression responses. However, while genomic responses to social challenges have been reported frequently, how developmental experience influences the shape of these genomic reaction norms remains largely unexplored. We tested how manipulating the early social environment of juvenile cooperatively breeding cichlids, Neolamprologus pulcher, affects their behavioural and brain genomic responses when competing over a resource. Juveniles were reared either with or without a breeder pair and a helper. Fish reared with family members behaved more appropriately in the competition than when reared without. We investigated whether the different social rearing environments also affected the genomic responses to the social challenge. A set of candidate genes, coding for hormones and receptors influencing social behaviour, were measured in the telencephalon and hypothalamus. Social environment and social challenge both influenced gene expression of egr‐1 (early growth response 1) and gr1 (glucocorticoid receptor 1) in the telencephalon and of bdnf (brain‐derived neurotrophic factor) in the hypothalamus. A global analysis of the 11 expression patterns in the two brain areas showed that neurogenomic states diverged more strongly between intruder fish and control fish when they had been reared in a natural social setting. Our results show that same molecular pathways may be used differently in response to a social challenge depending on early‐life experiences.  相似文献   

12.
Effects of social group size on information transfer and task allocation   总被引:6,自引:0,他引:6  
Summary Social animals exchange information during social interaction. The rate of interaction and, hence, the rate of information exchange, typically changes with density and density may be affected by the size of the social group. We investigate models in which each individual may be engaged in one of several tasks. For example, the different tasks could represent alternative foraging locations exploited by an ant colony. An individual's decision about which task to pursue depends both on environmental stimuli and on interactions among individuals. We examine how group size affects the allocation of individuals among the various tasks. Analysis of the models shows the following. (1) Simple interactions among individuals with limited ability to process information can lead to group behaviour that closely approximates the predictions of evolutionary optimality models, (2) Because per capita rates of social interaction may increase with group size, larger groups may be more efficient than smaller ones at tracking a changing environment, (3) Group behaviour is determined both by each individual's interaction with environmental stimuli and by social exchange of information. To keep these processes in balance across a range of group sizes, organisms are predicted to regulate per capita rates of social interaction and (4) Stochastic models show, at least in some cases, that the results described here occur even in small groups of approximately ten individuals.  相似文献   

13.
A long‐standing goal for biologists and social scientists is to understand the factors that lead to the evolution and maintenance of co‐operative behaviour between conspecifics. To that end, the fruit fly, Drosophila melanogaster, is becoming an increasingly popular model species to study sociality; however, most of the research to date has focused on adult behaviours. In this study, we set out to examine group‐feeding behaviour by larvae and to determine whether the degree of relatedness between individuals mediates the expression co‐operation. In a series of assays, we manipulated the average degree of relatedness in groups of third‐instar larvae that were faced with resource scarcity, and measured the size, frequency and composition of feeding clusters, as well as the fitness benefits associated with co‐operation. Our results suggest that larval D. melanogaster are capable of kin recognition (something that has not been previously described in this species), as clusters were more numerous, larger and involved more larvae, when more closely related kin were present in the social environment. These findings are discussed in the context of the correlated fitness‐associated benefits of co‐operation, the potential mechanisms by which individuals may recognize kin, and how that kinship may play an important role in facilitating the manifestation of this co‐operative behaviour.  相似文献   

14.
1. Interactions between species can vary from mutually beneficial to evolutionarily neutral to antagonistic, even when the same two species are involved. Similarly, social interactions between members of the same species can lie on a spectrum from conflict to cooperation. 2. The aim of the present study was to investigate whether variation in the two types of social behaviour are interconnected. Is the fitness of the various classes of social partner within species (such as parent and offspring, or male and female) differently affected by interactions with a second species? Moreover, can inter‐specific interactions influence the outcome of social interactions within species? 3. The present experiments focus on the interactions between the burying beetle Nicrophorus vespilloides Herbst and the phoretic mite Poecilochirus carabi G. Canestrini & R. Canestrini. The approach was to measure the fitness of burying beetle mothers, fathers, and offspring after reproduction, which took place either in the presence or absence of mites. 4. We found that male, female, and larval burying beetles derive contrasting fitness costs and benefits from their interactions with the mite, despite sharing a common family environment. From the mite's perspective, its relationship with the burying beetle can, therefore, be simultaneously antagonistic, neutral, and possibly even mutualistic, depending on the particular family member involved. We also found that mites can potentially change the outcome of evolutionary conflicts within the family. 5. We conclude that inter‐specific interactions can explain some of the variation in social interactions seen within species. It is further suggested that intra‐specific interactions might contribute to variation in the outcome of interactions between species.  相似文献   

15.
The social structure of populations plays a key role in shaping variation in sexual selection. In nature, sexual selection occurs in communities of interacting species; however, heterospecifics are rarely included in characterizations of social structure. Heterospecifics can influence the reproductive outcomes of intrasexual competition by interfering with intraspecific sexual interactions (interspecific reproductive interference [IRI]). We outline the need for studies of sexual selection to incorporate heterospecifics as part of the social environment. We use simulations to show that classic predictions for the effect of social structure on sexual selection are altered by an interaction between social structure and IRI. This interaction has wide‐ranging implications for patterns of sexual conflict and kin‐selected reproductive strategies in socially structured populations. Our work bridges the gap between sexual selection research on social structure and IRI, and highlights future directions to study sexual selection in interacting communities.  相似文献   

16.
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.  相似文献   

17.
The recent growth of research on animal personality could provide new insights into our understanding of sociality and the structure of animal groups. Although simple assays of the type commonly used to study animal personality have been shown to correlate with social aggressiveness in some bird species, conflicting empirical results do not yet make it clear when such assays, typically using isolated individuals, predict behaviour within social groups. We measured aggressiveness in groups of a very gregarious species, the common waxbill (Estrilda astrild), and performed five commonly used behavioural assays on the same individuals: tonic immobility, mirror test, novel object test, open‐field test and a variant of the latter in an enriched environment. We found that larger individuals were more dominant and that differences in aggressiveness were repeatable. None of the traditional behavioural assays were related to aggressiveness or dominance. Standard personality assays may fail to capture individual differences relevant to predict social behaviour, and we discuss biological and methodological explanations for these results, such as social behaviour being in part an emergent property of groups rather than an intrinsic property of individuals, or gregarious species being particularly sensitive to the conditions of standard personality assays that test individuals alone.  相似文献   

18.
Our understanding of the evolutionary stability of socially selected traits is dominated by sexual selection models originating with R. A. Fisher, in which genetic covariance arising through assortative mating can trigger exponential, runaway trait evolution. To examine whether nonreproductive, socially selected traits experience similar dynamics—social runaway—when assortative mating does not automatically generate a covariance, we modeled the evolution of socially selected badge and donation phenotypes incorporating indirect genetic effects (IGEs) arising from the social environment. We establish a social runaway criterion based on the interaction coefficient, ψ , which describes social effects on badge and donation traits. Our models make several predictions. (1) IGEs can drive the original evolution of altruistic interactions that depend on receiver badges. (2) Donation traits are more likely to be susceptible to IGEs than badge traits. (3) Runaway dynamics in nonsexual, social contexts can occur in the absence of a genetic covariance. (4) Traits elaborated by social runaway are more likely to involve reciprocal, but nonsymmetrical, social plasticity. Models incorporating plasticity to the social environment via IGEs illustrate conditions favoring social runaway, describe a mechanism underlying the origins of costly traits, such as altruism, and support a fundamental role for phenotypic plasticity in rapid social evolution.  相似文献   

19.
Social animals interact frequently with conspecifics, and their behaviour is influenced by social context, environmental cues and the behaviours of interaction partners, allowing for adaptive, flexible adjustments to social encounters. This flexibility can be limited by part of the behavioural variation being genetically determined. Furthermore, behaviours can be genetically correlated, potentially constraining independent evolution. Understanding social behaviour thus requires carefully disentangling genetic, environmental, maternal and social sources of variations as well as the correlation structure between behaviours. Here, we assessed heritability, maternal, common environment and social effects of eight social behaviours in Neolamprologus pulcher, a cooperatively breeding cichlid. We bred wild‐caught fish in a paternal half‐sibling design and scored ability to defend a resource against conspecifics, to integrate into a group and the propensity to help defending the group territory (“helping behaviour”). We assessed genetic, social and phenotypic correlations within clusters of behaviours predicted to be functionally related, namely “competition,” “aggression,” “aggression‐sociability,” “integration” and “integration‐help.” Helping behaviour and two affiliative behaviours were heritable, whereas there was little evidence for a genetic basis in all other traits. Phenotypic social effects explained part of the variation in a sociable and a submissive behaviour, but there were no maternal or common environment effects. Genetic and phenotypic correlation within clusters was mostly positive. A group's social environment influenced covariances of social behaviours. Genetic correlations were similar in magnitude but usually exceeding the phenotypic ones, indicating that conclusions about the evolution of social behaviours in this species could be provisionally drawn from phenotypic data in cases where data for genetic analyses are unobtainable.  相似文献   

20.
The social environment offers fish complex information about the quality, performance, personality and other cues of potential mates and competitors simultaneously. It is likely, therefore, that the environmental information regarding the context of mate choice is perceived and processed differently in species and sexes in respect to lateralisation. The present study comparatively assessed visual lateralisation behaviour in response to different social or sexual stimuli in three closely related poeciliid species (P. latipinna, P. mexicana, P. formosa) in comparison to a more distantly related species (P. reticulata). Individuals were presented with four different social or sexual stimuli that were tested against a control stimulus; (a) a conspecific male, (b) a conspecific female, (c) a heterosexual conspecific pair, (d) three conspecific females (shoal). In order to approach a target stimulus, focal fish had to perform detours to the right or left of a vertically straight-shaped barrier. The three closely related poeciliid species, P. latipinna, P. mexicana, P. formosa, appeared to have a general tendency to turn right (i.e., left-eye preference), whereas the more distantly related P. reticulata males and females showed an overall bias to the left (i.e., right-eye preference) in response to various social–sexual incitements. Moreover, body size seemed to significantly influence especially the males’ detour behaviour, with smaller males acting in opposition to their larger conspecifics in response to certain social stimuli. In this case, smaller and larger Poecilia spp. males responded in the same way as smaller and larger males of the other three poeciliid species. Therefore, results possibly point to differences in the degree of general social behaviour between closely and more distantly related species and mating motivation amongst larger and smaller individuals when placed in a novel social environment. Hence, present results possibly suggest a sex-specific functional lateralisation for the analysis of visual information and seem to support the closer ancestral relationships between the Poecilia spp. tested in this study and the more distantly related guppies in terms of their left–right lateralisation. Generally, present results suggest that functional asymmetries in behaviour could be widespread among vertebrates, thus supporting the hypothesis of an early evolution of lateralisation in brain and behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号