首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hyolitha: status of the phylum   总被引:1,自引:0,他引:1  
Hyoliths are operculate calcareous shells found in Palaeozoic rocks. Runnegar et al. (1975) suggested that they be referred to a new phylum (Hyolitha) but Marek & Yochelson (1976) and Dzik (1978) preferred to regard them as an extinct class of the Mollusca. Since the hyolith cone is not easily homologized with the monoplacophoran shell, the exoskeletons of the shelled Mollusca and the Hyolitha appear to have developed independently. Reconstructions of the anatomy of hyoliths indicate that it is unlikely that both groups shared a common molluscan ancestor. Therefore, hyoliths are probably not molluscs. Previous reconstructions of articulated hyolithids have suggested that left and right appendages (helens) curved dorsally. Crushed articulated specimens from the Burgess Shale indicate that this conclusion is incorrect; hyoltthid helens seem to have curved ventrally when the animals were alive.  相似文献   

3.
MOLLUSCAN SHELL PIGMENTS: AN IN SITU RESONANCE RAMAN STUDY   总被引:2,自引:0,他引:2  
Using Resonance Raman microspectrometry we identify polyenesas shell pigments in 13 gastropod, 1 cephalopod and 4 bivalvetaxa. The pigments are either isolated polyenes or polyenesbound to other molecules. Polyenes are present in coloured partsof the shell of all investigated taxa. Pigments differ betweentaxa and there is no trivial relationship between colour, pigmentand taxon. The same colour in different taxa may be due to differentpigments; different colours in the same taxon are due to differentpigments; different colour saturation is due to different concentrationof the same pigment. The pigment polyenes are unsubstitutedchains of 8–13 conjugated double-bonds (16–26 carbonatoms) in the chain, with terminals incorporating –CH3groups. This is the first demonstration of polyenes as shellpigment in the Mollusca. We also identify a carotenoid as theexternal, yellow pigment in Cypraea moneta. (Received 2 December 2004; accepted 18 August 2005)  相似文献   

4.
Biology of the Hyolitha   总被引:3,自引:0,他引:3  
Hyoliths are Paleozoic fossils that have a calcareous exoskeleton consisting of an elongate, usually bilaterally symmetrical cone, a close fitting operculum, and a pair of curved appendages. Their skeletal ultrastructure resembles the crossed-lamellar shell layers of some molluscs. Several specimens from the Ordovician of France and the Cambrian of Antarctica have parts of the gut preserved by infilling matrix, showing that both mouth ad anus were located near the cone aperture. Muscle scars in other hyolith shells indicate that the animal had a series of dorsoventral and longitudinal, or longitudinal and circular muscles, which operated through a hydrostatic skeleton to protract and retract the head, to open and close the operculum, and to move the appendages. Although the shell form and skeletal ultra-structure of hyoliths are of a molluscan type, the muscle insertions suggest that the hyolith cone is not homologous with the dorsal exoskeleton of primitive molluscs. Hyoliths probably constitute a small extinct branch of phylum size, related to the Mollusca and the Sipunculoidea. All three groups may have had common ancestors in the late Precambrian.  相似文献   

5.
Colouration is an important multifunctional attribute of modern animals, but its evolutionary history is poorly resolved, in part because of our limited ability to recognize and interpret fossil evidence of colour. Recent studies on structural and pigmentary colours in fossil insects and feathers have illuminated important aspects of the anatomy, taphonomy, evolution and function of colour in these fossils. An understanding of the taphonomic factors that control the preservation of colour is key to assessing the fidelity with which original colours are preserved and can constrain interpretations of the visual appearance of fossil insects and theropods. Various analytical approaches can identify anatomical and chemical evidence of colour in fossils; experimental taphonomic studies inform on how colour alters during diagenesis. Preservation of colour is controlled by a suite of factors, the most important of which relate to the diagenetic history of the host sediment, that is, maximum burial temperatures and fluid flow, and subsurface weathering. Future studies focussing on key morphological and chemical aspects of colour preservation relating to cuticular pigments in insects and keratinous structures and nonmelanin pigments in feathers, for example, will resolve outstanding questions regarding the taphonomy of colour and will enhance our ability to infer original colouration and its functions in fossil insects and theropods.  相似文献   

6.

Background

The exceptional diversity of coloration found in avian eggshells has long fascinated biologists and inspired a broad range of adaptive hypotheses to explain its evolution. Three main impediments to understanding the variability of eggshell appearance are: (1) the reliable quantification of the variation in eggshell colours; (2) its perception by birds themselves, and (3) its relation to avian phylogeny. Here we use an extensive museum collection to address these problems directly, and to test how diversity in eggshell coloration is distributed among different phylogenetic levels of the class Aves.

Methodology and Results

Spectrophotometric data on eggshell coloration were collected from a taxonomically representative sample of 251 bird species to determine the change in reflectance across different wavelengths and the taxonomic level where the variation resides. As many hypotheses for the evolution of eggshell coloration assume that egg colours provide a communication signal for an avian receiver, we also modelled reflectance spectra of shell coloration for the avian visual system. We found that a majority of species have eggs with similar background colour (long wavelengths) but that striking differences are just as likely to occur between congeners as between members of different families. The region of greatest variability in eggshell colour among closely related species coincided with the medium-wavelength sensitive region around 500 nm.

Conclusions

The majority of bird species share similar background eggshell colours, while the greatest variability among species aligns with differences along a red-brown to blue axis that most likely corresponds with variation in the presence and concentration of two tetrapyrrole pigments responsible for eggshell coloration. Additionally, our results confirm previous findings of temporal changes in museum collections, and this will be of particular concern for studies testing intraspecific hypotheses relating temporal patterns to adaptation of eggshell colour. We suggest that future studies investigating the phylogenetic association between the composition and concentration of eggshell pigments, and between the evolutionary drivers and functional impacts of eggshell colour variability will be most rewarding.  相似文献   

7.
Colour ornamentation in animals is exceptionally diverse, but some colours may provide better signals of individual quality or more efficient visual stimuli and, thus, be more often used as sexual signals. This may depend on physiological costs, which depend on the mechanism of colour production (e.g. exogenously acquired colouration in passerine birds appears to be most sexually dichromatic). We studied sexual dichromatism in a sample of 27 Australasian parrot species with pigment- (melanin and psittacofulvin) and structural-based colouration, to test whether some of these types of colouration are more prominent in sexual ornamentation. Unlike passerines, in which long wavelength colouration (yellow to red) usually involves exogenous and costly carotenoid pigments, yellow to red colouration in parrots is based on endogenously synthesized psittacofulvin pigments. This allows us to assess whether costly exogenous pigments are necessary for these plumage colours to have a prominent role in sexual signalling. Structural blue colouration showed the largest and most consistent sexual dichromatism, both in area and perceptually relevant chromatic differences, indicating that it is often ornamental in parrots. By contrast, we found little evidence for consistent sexual dichromatism in melanin-based colouration. Unlike passerines, yellow to red colouration was not strongly sexually dichromatic: although the area of colouration was generally larger in males, colour differences between the sexes were on average imperceptible to parrots. This is consistent with the idea that the prominent yellow to red sexual dichromatism in passerines is related to the use of carotenoid pigments, rather than resulting from sensory bias for these colours.  相似文献   

8.
Birds have sophisticated colour vision mediated by four cone types that cover a wide visual spectrum including ultraviolet (UV) wavelengths. Many birds have modest UV sensitivity provided by violet‐sensitive (VS) cones with sensitivity maxima between 400 and 425 nm. However, some birds have evolved higher UV sensitivity and a larger visual spectrum given by UV‐sensitive (UVS) cones maximally sensitive at 360–370 nm. The reasons for VS–UVS transitions and their relationship to visual ecology remain unclear. It has been hypothesized that the evolution of UVS‐cone vision is linked to plumage colours so that visual sensitivity and feather coloration are ‘matched’. This leads to the specific prediction that UVS‐cone vision enhances the discrimination of plumage colours of UVS birds while such an advantage is absent or less pronounced for VS‐bird coloration. We test this hypothesis using knowledge of the complex distribution of UVS cones among birds combined with mathematical modelling of colour discrimination during different viewing conditions. We find no support for the hypothesis, which, combined with previous studies, suggests only a weak relationship between UVS‐cone vision and plumage colour evolution. Instead, we suggest that UVS‐cone vision generally favours colour discrimination, which creates a nonspecific selection pressure for the evolution of UVS cones.  相似文献   

9.
We investigated muscle development in two chiton species, Mopalia muscosa and Chiton olivaceus, from embryo hatching until 10 days after metamorphosis. The anlagen of the dorsal longitudinal rectus muscle and a larval prototroch muscle ring are the first detectable muscle structures in the early trochophore-like larva. Slightly later, a ventrolaterally situated pair of longitudinal muscles appears, which persists through metamorphosis. In addition, the anlagen of the putative dorsoventral shell musculature and the first fibers of a muscular grid, which is restricted to the pretrochal region and consists of outer ring and inner diagonal muscle fibers, are generated. Subsequently, transversal muscle fibers form underneath each future shell plate and the ventrolateral enrolling muscle is established. At metamorphic competence, the dorsoventral shell musculature consists of numerous serially repeated, intercrossing muscle fibers. Their concentration into seven (and later eight) functional shell plate muscle bundles starts after the completion of metamorphosis. The larval prototroch ring and the pretrochal muscle grid are lost at metamorphosis. The structure of the apical grid and its atrophy during metamorphosis suggests ontogenetic repetition of (parts of) the original body-wall musculature of a proposed worm-shaped molluscan ancestor. Moreover, our data show that the "segmented" character of the polyplacophoran shell musculature is a secondary condition, thus contradicting earlier theories that regarded the Polyplacophora (and thus the entire phylum Mollusca) as primarily eumetameric (annelid-like). Instead, we propose an unsegmented trochozoan ancestor at the base of molluscan evolution.  相似文献   

10.
Littoraria filosa (Sowerby) is a member of the L. scabra group, found amongst the foliage of mangrove trees in northern Australia. The colour of the shell is polymorphic, showing two discrete ground colours, either yellow or orange-pink, with a variable degree of superimposed brown patterning. At a site on Magnetic Island, northern Queensland, colour frequencies of small snails were similar on different backgrounds. Amongst larger shells yellows were more frequent on Avicennia trees with abundant foliage, and browns on relatively bare trees, suggesting that visual selection for crypsis occurred. There was no evidence of substrate selection by the morphs. Yellow shells were cooler than brown shells, but differences in colour frequencies on sunny and shaded trees, and at different seasons, did not suggest climatic selection. By manipulating the colour frequencies of subpopulations of small snails isolated on individual trees, it was shown that the disappearance of yellow and brown shells was frequency-dependent. This result is consistent with hypotheses of mimicry of background elements by the morphs and of apostatic selection by unknown predators. Only the latter can account for the persistence of the highly conspicuous pink morph at a low frequency.  相似文献   

11.
Feather microstructure affects the light absorbed by plumage pigments. However, the effect of particular elements of feather microstructure on the expression of pigmentary colours or on the size of colour patches has never been investigated. Here I use a model of avian visual perception and scanning electron microscope imaging of feathers to show that part of variation in the size and colour properties of a melanin‐based plumage signal of quality, the black breast stripe of great tits Parus major, is explained by three elements of feather microstructure (barbule density, barb cortex size and barb pith size). The strongest associations were between large stripes and low barbule density, between dark stripes and high barbule density, and between stripes with high relative long reflectance and high barbule density and thin barb cortex. By contrast, carotenoid‐based colour was not related to microstructural elements. Thus, it is possible that not all variation in melanin‐based colour is determined by melanin content, but also by feather microstructure. These findings should be considered by studies on the evolution of signals of quality.  相似文献   

12.
Many insect species have darkly coloured eyes, but distinct colours or patterns are frequently featured. A number of exemplary cases of flies and butterflies are discussed to illustrate our present knowledge of the physical basis of eye colours, their functional background, and the implications for insect colour vision. The screening pigments in the pigment cells commonly determine the eye colour. The red screening pigments of fly eyes and the dorsal eye regions of dragonflies allow stray light to photochemically restore photoconverted visual pigments. A similar role is played by yellow pigment granules inside the photoreceptor cells which function as a light-controlling pupil. Most insect eyes contain black screening pigments which prevent stray light to produce background noise in the photoreceptors. The eyes of tabanid flies are marked by strong metallic colours, due to multilayers in the corneal facet lenses. The corneal multilayers in the gold-green eyes of the deer fly Chrysops relictus reduce the lens transmission in the orange-green, thus narrowing the sensitivity spectrum of photoreceptors having a green absorbing rhodopsin. The tapetum in the eyes of butterflies probably enhances the spectral sensitivity of proximal long-wavelength photoreceptors. Pigment granules lining the rhabdom fine-tune the sensitivity spectra.  相似文献   

13.
Pigment-based coloration is a common trait found in a variety of organisms across the tree of life. For example, calcareous avian eggs are natural structures that vary greatly in color, yet just a handful of tetrapyrrole pigment compounds are responsible for generating this myriad of colors. To fully understand the diversity and constraints shaping nature’s palette, it is imperative to characterize the similarities and differences in the types of compounds involved in color production across diverse lineages. Pigment composition was investigated in eggshells of eleven paleognath bird taxa, covering several extinct and extant lineages, and shells of four extant species of mollusks. Birds and mollusks are two distantly related, calcareous shell-building groups, thus characterization of pigments in their calcareous structures would provide insights to whether similar compounds are found in different phyla (Chordata and Mollusca). An ethylenediaminetetraacetic acid (EDTA) extraction protocol was used to analyze the presence and concentration of biliverdin and protoporphyrin, two known and ubiquitous tetrapyrrole avian eggshell pigments, in all avian and molluscan samples. Biliverdin was solely detected in birds, including the colorful eggshells of four tinamou species. In contrast, protoporphyrin was detected in both the eggshells of several avian species and in the shells of all mollusks. These findings support previous hypotheses about the ubiquitous deposition of tetrapyrroles in the eggshells of various bird lineages and provide evidence for its presence also across distantly related animal taxa.  相似文献   

14.
The paper gives an overview of the modern hypotheses on the origin of the phylum Mollusca and the formation of its main classes. The Cambrian stage of molluscan evolution is characterized based on the paleontological material. The doubtfulness of assignment of the Precambrian (Vendian) soft-bodied fossil Kimberella to mollusks is argued. Judging from the interpretation of the morphologically diverse Cambrian fossils, it is suggested that the classes Polyplacophora, Monoplacophora, Gastropoda and Bivalvia formed already near the Precambrian–Cambrian boundary, i.e., from the beginning of the paleontologically documented evolutionary history of the phylum, whereas the assumption of the later origin of these taxa is unconvincing. The remaining classes of mollusks arose later, i.e., Cephalopoda, in the Late Cambrian; Scaphopoda, in the Ordovician; and Aplacophora, in the Silurian.  相似文献   

15.
The rough periwinkle Littorina “saxatilis” exhibits a wide range of shell colours. In current literature it is claimed that these colours are not related to the environment, that they arise randomly as genetic accidents and that they have little positive survival value. In a previous paper it has been shown that, in Wales, “saxatilis” consists of four separate, fully sympatric species. This paper reports an investigation as to whether the colour of two of these species, nigrolineata and rudis, is related to the colour of the background. Because of difficulties in quantitatively describing the colour of the background it was decided to concentrate mainly upon one aspect: whether or not the frequency of red shells is larger upon shores consisting of red sandstone than elsewhere in Wales. In both species the association between red shells and red sandstone is highly significant. All nigrolineata samples in which red was found at a frequency above 15% are from red sandstone. On red sandstone, red shells of this species were found mainly upon sheltered shores, their frequency decreasing and that of white shells increasing with exposure. This may be because barnacles, which occupy the same vertical zone as nigrolineata, are more abundant upon exposed shores. Partly covering the red rock, barnacles create a white background upon which white shells, rather than red, are cryptic. Yellow shells are found mainly on sheltered shores, where the brown alga Fucus is abundant. It was observed that when the tide is in and the algae spread out, a yellow shell situated beneath them is well concealed. Yellow is also found upon barnacles which because of fungal and lichen infections, are dirty yellow. It is suggested that a striped (“nigrolineated”) pattern breaks up the shape of the shell. It also resembles the colour of the dark rock and the dark sutures between barnacle plates. In rudis 80% of the samples containing over 25% red are from red sandstone. Contrast to nigrolineata, in this species the relative frequency of red decreases on sheltered shores. This could be because the brown alga Pelvetia, which occupies the same vertical zone as rudis, is more abundant in sheltered conditions and its colour partly covers over that of the rock beneath. The fact that in both species red shells are more frequent upon red sandstone than elsewhere in the study area, suggests that visual selection is restricting their distribution to the background that they match most. Rock pipits and shore-crabs prey upon winkles. They have colour perception and could be partly responsible for this selection.  相似文献   

16.
The role of colours and colour patterns in behavioural ecology has been extensively studied in a variety of contexts and taxa, while almost overlooked in many others. For decades anurans have been the focus of research on acoustic signalling due to the prominence of vocalisations in their communication. Much less attention has been paid to the enormous diversity of colours, colour patterns, and other types of putative visual signals exhibited by frogs. With the exception of some anecdotal observations and studies, the link between colour patterns and the behavioural and evolutionary ecology of anurans had not been addressed until approximately two decades ago. Since then, there has been ever‐increasing interest in studying how colouration is tied to different aspects of frog behaviour, ecology and evolution. Here I review the literature on three different contexts in which frog colouration has been recently studied: predator–prey interactions, intraspecific communication, and habitat use; and I highlight those aspects that make frogs an excellent, yet understudied, group to examine the role of colour in the evolution of anti‐predation strategies and animal communication systems. Further, I argue that in addition to natural‐history observations, more experiments are needed in order to elucidate the functions of anuran colouration and the selective pressures involved in its diversity. To conclude, I encourage researchers to strengthen current experimental approaches, and suggest future directions that may broaden our current understanding of the adaptive value of anuran colour pattern diversity.  相似文献   

17.
Autumnal change in leaf colour of deciduous trees is one of the most fascinating displays in nature. Current theories suggest that autumn leaf colours are adaptations to environmental stress. Here I report that the number of ripening female catkins altered timing of yellow autumn leaf colours in mountain birch. The tree's autumnal colour change was brought forward if the tree matured plenty of female catkins. Since yellow colour pigments in leaves are unmasked as leaf nitrogen is re-translocated, sexual reproduction may alter resource allocation at times of leaf senescence. Thus, our current view on the reasons for leaf senescence has to be re-examined, and a novel evolutionary explanation is needed for the appearance of yellow autumn leaf colours.  相似文献   

18.
Attention is focussed on a novel tool to study evolutionary trends in organisms. Emphasis is placed on the comparative biochemistry of shell proteins. It is tentatively concluded that the organic matrix of molluscan shells is predominantly a mixture of “secreted” collagen and k-m-e-f type proteins, and to a lesser extent of mucopolysaccharides. Each species has its characteristic organic pattern. Thus, the heterogeneity of calcified tissues can be related to molluscan phylogeny and evolution.  相似文献   

19.
Over the past century, the study of animal color has been critical in establishing some of the founding principles of biology, especially in genetics and evolution. In this regard, one of the emerging strengths of working with the land snail genus Cepaea is that historical collections can be compared against modern‐day samples, for instance, to understand the impact of changing climate and habitat upon shell morph frequencies. However, one potential limitation is that prior studies scored shell ground color by eye into three discrete colours yellow, pink, or brown. This incurs both potential error and bias in comparative surveys. In this study, we therefore aimed to use a quantitative method to score shell color and evaluated it by comparing patterns of C. nemoralis shell color polymorphism in the Pyrenees, using both methods on present‐day samples, and against historical data gathered in the 1960s using the traditional method. The main finding was that while quantitative measures of shell color reduced the possibility of error and standardized the procedure, the same altitudinal trends were recovered, irrespective of the method. The results also showed that there was a general stability in the local shell patterns over five decades, including altitudinal clines, with just some exceptions. Therefore, although subject to potential error human scoring of snail color data remains valuable, especially if persons have appropriate training. In comparison, while there are benefits in taking quantitative measures of color in the laboratory, there are also several practical disadvantages, mainly in terms of throughput and accessibility. In the future, we anticipate that genomic methods may be used to understand the potential role of selection in maintaining shell morph clines. In addition, photographs generated by citizen scientists conducting field surveys may be used with deep learning‐based methods to survey color patterns.

We used a quantitative method to score the shell colour of Cepaea nemoralis shells, and evaluated it by comparing patterns shell colour polymorphism in the Pyrenees, using both methods on present day samples, and against historical data gathered in the 1960s using the traditional method. The main finding was that while quantitative measures of shell colour reduced the possibility of error and standardised the procedure, the same altitudinal trends were recovered, irrespective of the method. The results also showed that there was a general stability in the local shell patterns over five decades, including altitudinal clines, with just some exceptions.  相似文献   

20.
Ornamental colours usually evolve as honest signals of quality, which is supported by the fact that they frequently depend on individual condition. It has generally been suggested that some, but not all types of ornamental colours are condition dependent, indicating that different evolutionary mechanisms underlie the evolution of multiple types of ornamental colours even when these are exhibited by the same species. Stress hormones, which negatively affect condition, have been shown to affect colour traits based on different pigments and structures, suggesting that they mediate condition dependence of multiple ornament types both among and within individuals. However, studies investigating effects of stress hormones on different ornament types within individuals are lacking, and thus, evidence for this hypothesis is scant. Here, we investigated whether corticosterone mediates condition dependence of multiple ornaments by manipulating corticosterone levels and body condition (via food availability) using a two‐factorial design and by assessing their effect on multiple colour traits in male common lizards. Corticosterone negatively affected ventral melanin‐ and carotenoid‐based coloration, whereas food availability did not affect coloration, despite its significant effect on body condition. The corticosterone effect on melanin‐ and carotenoid‐based coloration demonstrates the condition dependence of both ornaments. Moreover, corticosterone affected ventral coloration and had no effect on the nonsexually selected dorsal coloration, showing specific effects of corticosterone on ornamental ventral colours. This suggests that corticosterone simultaneously mediates condition dependence of multiple colour traits and that it therefore accounts for covariation among them, which may influence their evolution via correlational selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号