首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Laboratory experiments showed that A. bright-welli could outreproduce, or coexist with, A. silvestrii only when the absence of dietary tocopherol prevented the latter from transforming to the giant cruciform and campanulate morphs. When tocopherol permitted polymorphic transformations, as often occurs in nature, the giant morphs of A. silvestrii ingested and rapidly excluded the much smaller, only slightly polymorphic A. brightwelli. Such interference (or encounter) competition from trimorphic Asplanchna species is known to occur in nature and must limit the distribution and abundance of monomorphic or only slightly polymorphic species. The ability to eat congeneric competitors may have provided some selective pressure for the evolution of gigantism in the genus.  相似文献   

2.
Fertilized resting eggs of Australian Brachionus quadridentatus hatched 2–3 days after hydration into females with or, more frequently, without posterior lateral spines. These females then produced clones with short-spined or long-spined phenotypes. Asplanchna girodi induced females from two short-spined clones and one long-spined clone to produce daughters with significantly longer posterior lateral spines. In all clones, there were significant differences in spine development among offspring of mothers within Asplanchna and control treatments. The range of phenotypes reported in one short-spined clone is observed in the billabong and includes much of the variation described for the species, with mehleni (long-spined) phenotypes occurring with Asplanchna. In B. quadridentatus, the ecological significance of long-spined, basic phenotypes, and of the spine-development response to Asplanchna, is unclear. In laboratory cultures, females of all clones were attached to the substratum or water surface, and were safe from Asplanchna; in nature, females are epiphytic and probably rarely susceptible to Asplanchna. Most (96%) resting eggs produced in cultures and kept under culture conditions hatched after a 7-day latent period. This raises questions regarding natural conditions which might prevent hatching and allow accumulation of resting eggs in a sediment egg bank. Hatching of resting eggs in nature may be enhanced in sediments which dry and then become flooded after rains.  相似文献   

3.
1. A Patagonian strain of Keratella tropica has very different induced morphological responses to two predators – the carnivorous rotifer Asplanchna brightwelli and the interference competitor Daphnia pulex. Asplanchna induces the most exuberant morph. Compared to the basic morph, it has a fourfold longer right posterolateral spine (up to c. 115 μm), greatly elongated anterolateral and anterosubmedian spines, and no left posterolateral spine. Transitional morphs have an incompletely developed right posterolateral spine and a reduced left posterolateral spine. Daphnia induces moderate development of both posterior spines but no elongation of any anterior spines. Induction of these morphs by Asplanchna and Daphnia is mediated by kairomones. 2. The Asplanchna‐induced morph is much better defended against large (0.9 mm) Asplanchna than either the basic or Daphnia‐induced morph. The long right posterolateral spine usually prevents capture or ingestion. The Asplanchna‐ and Daphnia‐induced morphs are similarly susceptible to interference from large (3 mm) D. pulex. 3. Life‐table experiments with cohorts of the basic and Asplanchna‐induced morphs at 5 × 103 and 2 × 104 cells of Cryptomoas erosa per millilitre indicate little or no cost of the induced defense. Lifetime fecundity (13–15 offspring per female) did not differ significantly between morphs. The mean intrinsic rate of natural increase (rm day−1) of the induced morph was very slightly but significantly lower than that of the basic morph at the lower food concentration (0.46 versus 0.48) but no different from it at the higher food concentration (0.53 versus 0.54). However, spine development may involve undetermined allocation costs and environmental costs relating to interactions with other organisms. 4. It is not clear why K. tropica has separate induced responses to Asplanchna and Daphnia. Moderate spine development probably reduces damage or ingestion by small (<1.5 mm) daphniids, as in other species of Keratella, but further development may confer no protection against larger ones. Thus, the ratio of benefit to cost with daphniids (and other cladocerans) may be highest for intermediate spine development. In contrast, much greater spine development seems necessary for effective defense against Asplanchna. The more moderate response to Daphnia also may reflect less likely spatial and temporal overlap.  相似文献   

4.
SUMMARY 1. Sexual reproduction in the heterogonic life cycle of many rotifers occurs when amictic females, which produce diploid eggs developing parthenogenetically into females, are environmentally induced to produce mictic females. Mictic females produce haploid eggs which develop parthenogenetically into males or, if fertilised, into resting eggs – encysted embryos which develop into amictic females after an obligatory diapause. 2. A Florida strain of Brachionus calyciflorus was used to test the prediction that amictic females hatching from resting eggs (Generation 1), and those from the next few parthenogenetic generations, have a lower propensity to produce mictic daughters in response to crowding than those from later parthenogenetic generations. In 10 replicate clones, populations initiated by amictic females from generations 1, 5, 8, 12 and 18 were exposed to a standardised crowding stimulus, and the proportion of mictic females in the populations was determined. These proportions varied significantly across generations and clones. They were very low in the early generations and gradually increased to a mean of about 0.5 at Generation 12. 3. The mechanism for the transgenerational plasticity in response to crowding is not known. One possibility is that resting eggs contain an agent from their fertilised mictic mother's yolk gland that prevents development into mictic females and is transmitted in increasingly low concentrations through successive parthenogenetic generations of amictic females. 4. This parental effect may contribute to clonal fitness by ensuring that a clone developing from a resting egg will attain a higher population size through female parthenogenesis before maximising its commitment to sexual reproduction, even in the presence of a crowding stimulus from a high population density of other clones. Therefore, the number of resting eggs to which a clone contributes its genes should be maximised. 5. The clonal variation in propensity to produce mictic females in this strain indicates genetic variation in the trade‐off between maximising population growth via female parthenogenesis and increasing the probability of producing at least some resting eggs before local extinction from the plankton.  相似文献   

5.
  1. The daily ration required to maintain a population growth rate, r m, of zero (threshold ration) increased with increasing Asplanchna body mass. This relationship is described by the equation T=0.342 W0.797 where T=threshold ration (μg day-1 dry mass) and W=Asplanchna body mass (μg adult-1 dry mass).
  2. The threshold ration of large campanulate morphs of A. silvestrii was 3.7 times greater than that of conspecific saccate morphs suggesting that campanulates may be restricted to food-rich habitats.
  3. The daily ration required to maintain r m that is half the maximal population growth rate increased with increasing Asplanchna body mass and is described by the equation H=1.107 W1.103 where H=ration level and W=Asplanchna body mass. This population growth characteristic may reflect adaptations of rotifers to resource level.
  4. The relationships between ration level, food concentration, and Asplanchna body mass do not support the predictions of the size-efficiency hypothesis but are consistent with observed patterns of species distribution in nature.
  相似文献   

6.
Experiments with artificial colonies consisting of only female workers and those of female nymphs and workers of a subterranean termite, Reticulitermes speratus, showed that neotenics (ergatoids and nymphoids) can reproduce parthenogenetically. The larvae hatched from the eggs produced partheno‐genetically by the neotenics were all female and did not have any aberrant external morphology. They had 42 chromosomes and were diploid. The analysis of genotypes at microsatellite loci revealed that the eggs produced parthenogenetically had only one of the two alleles that the mother neotenics possessed, indicating that the eggs were produced by automixis.  相似文献   

7.
Abstract We compared reproductive allocation and variation in condition and survivorship of two heritable female throat color morphs (orange and yellow) in a free‐living population of side‐blotched lizards (Uta stansburiana). Using path analysis and structural equation modeling, we investigated how variation in the social environment affected clutch size and egg mass and two condition traits (postlaying mass, immunological condition) and how these traits in turn affected female field survival. In the presence of many neighbors, both morphs increased their clutch sizes, although these effects were only significant in yellow females. In addition, yellow females increased their egg mass in the presence of many orange neighbors. Orange females surrounded by many orange neighbors showed sign of stress in the form of immunosuppression, whereas this effect was less pronounced in yellow females. The morphs also differed in the impact of variation in clutch size and egg mass on both condition traits. Finally, female morphotype and immune responsiveness affected fitness interactively, and hence these two traits showed signs of fitness epistasis: Selection gradients on this trait were opposite in sign in the two morphs. The correlational selection gradient (γthroatxantibody response) between female throat color and antibody responsiveness was ‐0.365. Our data thus reveal important interactive effects such as genotype‐by‐environment interaction toward the social environment and morph‐specific trade‐offs as well as the occurrence of correlational selection. We discuss the use of naturally occurring and conspicuous genetic polymorphisms in field studies of selection and life‐history allocation.  相似文献   

8.
Morphological features, development and reproduction behavior of the parasite Melittobia acasta (Walker) were studied when reared on the pupae of the bumblebee Bombus terrestris L. in the laboratory under 23°C, 50% relative humidity and 12 h light : 12 h dark conditions. The parasites laid transparent white and elongated eggs. Newly hatched larval size and shape were very similar to eggs but they were identified by their body segments. Larvae increased their body size through moulting and transformed into a vermiform shape. Male pupae were shiny brown with dots. The female pupae were distinguished by their black shiny color, shorter size and the presence of compound eyes. Adult male pupae were dark brown and dwarf‐winged, whereas female pupae were macropterous and brachypterous. Reproduction took place by fertilization and also parthenogenetically. Mean fecundity within 5 days by mated (47.9 ± 30.5 female?1) and virgin (7.4 ± 6.8 female?1) females were statistically different. Mated females laid fertilized eggs that produced adult males or females, whereas virgin females laid unfertilized eggs that produced males. Development durations of the virgin female originated eggs, larvae, pupae and adults were statistically identical with those of mated females. The parasites were female‐biased and foundress number did not affect offspring sex ratio. This study shows that both mated and virgin females of M. acasta can produce many offspring on B. terrestris pupae within a short period, indicating that they are dangerous parasites of the bumblebee in a mass rearing system.  相似文献   

9.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

10.
Sex‐specific colour polymorphisms have been extensively documented in many different taxa. When polymorphism in colour pattern is restricted to females, the condition is known as female‐limited pattern polymorphism (FPP), which has been less commonly addressed in vertebrates. FPP is present in several lizard species, although most research on lizards has focused on carotenoid‐ and pteridine‐based coloration and not on melanin‐based polymorphisms. In the present study, we focus on Iberian wall lizards, Podarcis hispanicus, where two female melanin‐based dorsal patterns can be clearly distinguished: striped and reticulated‐blotched. We indirectly tested the hypothesis that selection acts differentially among P. hispanicus female morphs to create alternative morph‐specific phenotypic optima at different levels by investigating whether morphs differ in fitness proxies. We specifically examined whether the two female dorsal pattern morphs differed in adult morphology, dorsal coloration, immune response, reproductive investment, and growth. We did not find a relationship between melanin‐based coloration and hatchling growth and immune response, despite a correlation between these traits possibly being expected as a result of pleiotropy in the melanocortin system. However, our results show that female dorsal morphs in P. hispanicus differ in terms of adult morphology, dorsal coloration, and reproductive investment. Reticulated‐blotched P. hispanicus females had deeper heads and longer femora, less melanin, and more brownish coloration, and also had larger and heavier hatchlings than striped females.  相似文献   

11.
John J. Gilbert 《Oecologia》1973,13(2):135-146
Summary Experiments show that humps or body wall outgrowths protect males and cruciform females of Asplanchna sieboldi from predation by conspecific, cannibal females. Humped prey were eaten by large cannibals to a significantly lesser extent than similarly-sized or even larger, non-humped prey.Since males and male-producing females, which are typically cruciform, co-occur with the largest, most cannibalistic morphotypes, their protection by humps may greatly increase the efficiency of sexual reproduction.An analysis of female diets and the occurrence of humped males and females in the different species of Asplanchna shows that these humped forms are found only in those species in which the females can eat comparatively large prey. This relationship provides strong indirect evidence for the theory that humps in both males and polymorphic females specifically evolved as a defense mechanism against predation by conspecific, cannibal females.Supported by National Science Foundation Grant GB-32182.  相似文献   

12.
1. One at a time during the reproductive period of amictic females, oocytes fill with yolk and undergo a mitotic maturation division (oogenesis), are oviposited as single cells, and then develop parthenogenetically into females. Sexual reproduction in Brachionus and several other genera is initiated when amictic females are crowded and oviposit some eggs induced to differentiate into mictic females. Mictic females produce haploid eggs that can develop parthenogentically into males or be fertilised and develop into diapausing embryos called resting eggs. 2. This study examines the time when oocytes in amictic females respond to maternal population density. Is the fate of all oocytes in the germarium irreversibly determined during the early postnatal life of the mother, or is each oocyte labile until just before oviposition? In the former case, the probability of an amictic female producing a mictic daughter at any time throughout her reproductive period would reflect the population density she experienced while young and not that at the time she oviposited an egg. 3. Amictic females of two clones of a Florida strain of B. calyciflorus were cultured singly from birth at a low or high density (in a large or small volume) until about halfway through their reproductive period and then switched (experimental treatment), or not (control treatment), to the other density condition. The results indicate that the female fate of an oocyte is determined by maternal population density during oogenesis. Eggs oviposited soon after transfer from low to high density had the same, or a higher, probability of becoming mictic females compared with those produced by control females kept at the high density; eggs oviposited after transfer from the high to the low density had the same low probability of becoming mictic females as those produced by control females kept at the low density. 4. Control females kept at the high density were less likely to produce mictic daughters as they aged. This decline is not because of a decreased propensity of older females to respond to crowding, as older females responded maximally when transferred from a low to a high population density. 5. As oocytes in amictic females respond to maternal population density only during oogenesis, there is a negligible lag between the population‐density signal in the environment and the commitment to sexual reproduction. This minimises the obligatory two‐generation lag between this signal and production of resting eggs, and thus reduces the possibility that crowding will lead to food limitation before production of these eggs.  相似文献   

13.
Loaches (Misgurnus anguillicaudatus) were collected from 35 localities in Japan and assayed by flow cytometry to determine ploidy status. No tetraploids were found, with samples from 33 localities having no or few (1.2–3.2%) triploids. Samples collected from Ichinomiya Town, Aichi Prefecture, showed a relatively high rate of triploidy (7.7%). Samples collected from a fish farm in Hirokami Village, Niigata Prefecture, also showed high proportions of triploids (2.0–15.8%), these triploid males being sterile, but the females producing both large-sized triploid and small-sized haploid eggs. Such eggs developed bisexually rather than gynogenetically, giving rise to viable tetraploid and diploid offspring after normal fertilization. Of eight diploid females obtained from the same locality, one produced a high incidence of viable diploid gynogens (55%) after gynogenetic induction by fertilization with UV-irradiated spermatozoa. These observations indicated the presence of diploid fish which produced both diploid and haploid eggs. Thus, triploid and diploid individuals were also produced after fertilization with haploid spermatozoa. These results suggested that the occurrence of such unreduced eggs may be a cause of natural polyploidization in this species.  相似文献   

14.
The grasshopper Podisma tyatiensis, which is distributed only at the summit of Mount Tyatya on Kunashiri Island, the Kuril Islands, is closely related to Podisma sapporensis, which has a broad distribution range on the islands of northern Japan and the Russian Far East (Hokkaido, Sakhalin and Kunashiri). The present study examined the taxonomic status of P. tyatiensis by crossing P. tyatiensis males with P. sapporensis females from Sakhalin. More than 90% of eggs from intrapopulation crosses developed to at least the last embryonic stage, whereas only 64% of eggs from the interpopulation crosses developed into that embryonic stage. Cytogenetic observations of prediapause embryos showed that the interpopulation crosses always led to the production of unfertilized eggs, and that all of the developing embryos had the maternal genome only. A mixture of haploid and diploid cells of maternal origin was found in most of those embryos. This result shows that unfertilized eggs produced by P. sapporensis females from Sakhalin developed parthenogenetically to at least the embryonic stage before hatching. The present crossing experiments revealed a high level of incompatibility between the genomes of the Sakhalin population and the Tyatya population, and confirmed the full species status of P. tyatiensis.  相似文献   

15.
The burrowing polymitarcyid mayfly Ephoron shigae is a geographically parthenogenetic species. Interestingly, the distributions of the bisexual and unisexual populations overlap broadly in their respective geographic ranges. In this mayfly, obligatory diploid thelytoky appears within unisexual populations. In the present study, we examined the potential for parthenogenesis or the parthenogenetic ability of females in a bisexual population aiming to understand the emergence of unisexual populations. The results obtained revealed that females in the examined bisexual populations showed a potential for diploid thelytoky as also seen in the unisexual populations, although, in females from bisexual populations, the development success rates of their unfertilized eggs were considerably lower than those of virgin females from unisexual populations. In the three bisexual reproducing species (Ephemera japonica, Ephemera strigata, and Ephemera orientalis) in the closely‐related family Ephemeridae, diploid thelytoky (i.e. tychoparthenogenesis; < 3%) was also observed. However, in this case, the parthenogenetic development success rates of unfertilized eggs were significantly lower than those of virgin females in the bisexual (Hino‐yosui Irrigation Canal) population of E. shigae. Accordingly, we suggest that parthenogenetic ability (i.e. tychoparthenogenesis or facultative parthenogenesis) in bisexual populations of E. shigae may facilitate the evolutionary transition to unisexual populations with fully obligatory parthenogenesis. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 326–334.  相似文献   

16.
1. Fecundity of a Dikerogammarus villosus population at Spitz was studied in the Austrian Danube during the 3‐year period 2002–2004. Ovigerous females were absent in October and November, and extremely scarce in December when the reproductive season started again slowly. From January to September pre‐copulatory pairs and egg‐carrying females were present. The reproductive cycle lasted for 9–10 months. 2. Various pigmentation phenotypes of D. villosus have been described in the literature. However, no significant differences were found between the reproductive variables studied here and several colour morphs. Mating was size‐assortative; mean body length of males was about 1.3 times greater than that of their potential mates, and the wet weight was approximately twice as heavy. 3. The relationship between the number of embryos per clutch and the wet weight of females was described by a 3‐parameter power equation. The population mean was 43 eggs with a range of five to 194 eggs. Eighty‐two specimens from 1359 D. villosus females had more than 100 eggs: the smallest of these females was 12 mm long (30 mg) wet weight, and the largest, which was 18 mm long (91 mg), had 194 eggs in embryonic development stage 4. 4. Numbers of embryos in developmental stages 2 (early egg stage) and 7 (newly hatched neonates) differed significantly with body wet weight of ovigerous females (P < 0.05). For an average female in the range 10–12 mm (20–30 mg) the number of juveniles in the brood pouch was 74% of the number of stage 2 eggs. This value can be interpreted as the survival rate of eggs. 5. The overall mean egg volume (EV, ±95% CL) of stage 2 eggs of D. villosus was 0.05 ± 0.001 mm3, and EV increased significantly at each stage of development. At stage 6, egg volume had increased by a factor of 2.6, and averaged 0.13 ± 0.001 mm3. In comparison, G. fossarum and G. roeseli had significantly larger eggs in all developmental stages. 6. Mean egg size of D. villosus (0.063 mm3) was maximal in January. For D. villosus (and G. roeseli) the minimum mean egg size occurred in September. In contrast to G. fossarum and G. roeseli, a second peak in egg size was not observed for D. villosus, and egg size fell more or less successively from January to September. 7. A simple index of fecundity was calculated from the number of stage 2 eggs divided by the female's wet weight. The highest values were observed in April and May, when females from the overwintering generation grew to their maximum body size. Thus the release of a large number of neonates corresponds with the availability of plentiful food and rising water temperatures for juvenile growth in the spring. The lowest value occurred in December. In June the small females of a summer generation appeared, with a naturally low fecundity. 8. The relationship between brood development time and water temperature was studied in the laboratory at a series of constant temperatures. At 16 °C, mean brood development time was 14 days for D. villosus, compared with about 3 weeks for the indigenous species. At 10 °C, mean brood development time was 24 days in D. villosus, compared with 40 days in G. fossarum and 44 days in G. roeseli. At 4 °C it was 1.8 and 3.5 times longer in G. fossarum and G. roeseli. 9. The number of offspring produced by a single clutch from a large female D. villosus is considerably higher than the total numbers produced by the indigenous freshwater gammarids, such as G. fossarum, G. roeseli and G. pulex, during their life‐spans of 1.5–2 years in seven to nine successive broods. Only one or two large ovigerous D. villosus would probably be enough to start a new population. A potentially high reproductive capacity, comparatively small eggs, optimal timing to release the maximum number of neonates per female in April/May, and a long reproductive cycle, together with rapid development of eggs, rapid growth to sexual maturation, short life span, tolerance to a wide range of environmental conditions, and exceptional predatory capabilities, all give the invasive Ponto‐Caspian gammarid an opportunity to become globally distributed in freshwater ecosystems of the temperate climate zone.  相似文献   

17.
In nonterritorial damselflies, females often come in multiple color morphs, perhaps because females with rare colors experience reduced sexual harassment, and thus have a frequency‐dependent fitness advantage, compared to females of the most common color morph, but such polymorphisms are rare in territorial species. We consider three hypotheses to explain the rarity of female color polymorphisms in territorial species: (a) misdirected male aggression, (b) poor male mate recognition, and (c) low mating harassment rates. The first hypothesis has some empirical support, and can account for the absence of andromorphs (i.e., females that resemble males), but does not explain the absence of multiple heteromorphs. We tested the second hypothesis by presenting females of two novel color morphs (green‐ or red‐banded abdomens) to territorial male Hetaerina capitalis. Females of both novel color morphs elicited fewer sexual responses than control females, and the red morph occasionally elicited aggressive responses. These results indicate that novel female color morphs would experience reduced mating harassment in this species, contradicting the hypothesis that male mate recognition is too poorly developed to reduce harassment of novel female morphs. By process of elimination, the third hypothesis, that harassment rates are too low in territorial species to provide rare female morphs a fitness advantage, is favored, but remains untested. Our findings also suggest that the common practice of color‐marking odonates for behavioral research is likely to interfere with mate choice, as has long been known to be the case in birds.  相似文献   

18.
We have described the polymorphism in the hatchlings of resting eggs and the morphological variations between the stem females hatched from resting eggs and their successive parthenogenetic generations in the rotifer Brachionus calyciflorus. We hatched resting eggs of B. calyciflorus in two different culture mediums: unconditioned medium (IOM) and Asplanchna-conditioned (ACM). The hatching rate of resting eggs in IOM and ACM were 32.5% and 28.5%, respectively, and showed no significant difference. Stem females hatching from these resting eggs had three morphotypes (unspined, single short-spined, and two short-spined) and over 80% of these females were spineless ones. Moreover, the frequency of each morphotype stem females showed similar tendency in IOM and ACM. The production of a variety of morphotypes among stem mothers—rather than all unspined as has been previously reported for this species—may be regarded as a form of bet-hedging in this population of B. calyciflorus. Phenotypic changes in morphology between the stem females hatched from resting eggs and their successive parthenogenetic generations in B. calyciflorus were found. The possible mechanisms, responsible for high proportion of spineless phenotype at early generations from resting eggs and increased spined phenotype in successive parthenogenetic generations, were discussed in the article.  相似文献   

19.
The European water frog Pelophylax esculentus is a natural hybrid between P. lessonae (genotype LL) and P. ridibundus (RR). It reproduces through hybridogenesis, eliminating one parental genome from its germline and producing gametes containing the genome of the other parental species. According to previous studies, this elimination and transmission pattern is very diverse. In mixed populations, where only diploid hybrids (LR) live in sympatry and mate with one or both parental species, the excluded genome varies among regions, and the remaining genome is transmitted clonally to haploid gametes. In all‐hybrid populations consisting of diploid (LR) and triploid (LLR and/or LRR) frogs, diploid individuals also produce gametes clonally (1n in males, 2n in females), whereas triploids eliminate the genome they have in single copy and produce haploid gametes containing the recombined other genome. However, here, too, regional differences seem to exist, and some triploids have been reported to produce diploid gametes. In order to systematically study such regional and genotype differences in gamete production, their potential origin, and their consequences for the breeding system, we sampled frogs from five populations in three European countries, performed crossing experiments, and investigated the genetic variation through microsatellite analysis. For four populations, one in Poland, two in Germany, and one in Slovakia, our results confirmed the elimination and transmission pattern described above. In one Slovakian population, however, we found a totally different pattern. Here, triploid males (LLR) produce sperm with a clonally transmitted diploid LL genome, rather than a haploid recombined L genome, and LR females clonally produce haploid R eggs, rather than diploid LR eggs. These differences among the populations in gamete production go along with differences in genomotype composition, breeding system (i.e., the way triploids are produced), and genetic variation. These differences are strong evidence for a polyphyletic origin of triploids. Moreover, our findings shed light on the evolutionary potential inherent to the P. esculentus complex, where rare events due to untypical gametogenetic processes can lead to the raise, the perpetuation, and the dispersion of new evolutionary significant lineages which may also deserve special conservation measures.  相似文献   

20.
1. Oviposition choices can profoundly affect offspring performance. Oviposition decisions of the dipteran pre‐dispersal seed predator, Hylemya sp. (Diptera: Anthomyiidae), when choosing among sex morphs of their host‐plant—Polemonium foliosissimum Hook—were evaluated. Polemonium foliosissimum is gynodioecious, with female and hermaphrodite sex morphs that differ in flower size. 2. It was asked: Do female flies preferentially oviposit on hermaphrodite plants and, if so, are oviposition choices correlated with flower size? Is larval survivorship higher on hermaphrodite plants and, if so, is larval success correlated with flower size? Can the differences in oviposition and/or larval success be explained by slight differences in flowering phenology between the sexes? 3. Hermaphrodite flowers received 45% more Hylemya eggs than females. Although hermaphrodites had larger petals and sepals than females, egg loads were not correlated with petal or sepal size. Larval survival was 30% greater on hermaphrodites than females and higher on plants with larger sepals. However, the difference in sepal area between genders did not fully explain larval survival differences. Egg numbers declined over weeks, but differences in egg loads between the sex morphs were not attributable to a slight phenological delay of females. Larval survival declined over the season; however, larval survival differences between sex morphs were consistent. 4. Hylemya preferentially oviposited on hermaphrodites where their larvae had a significantly greater survival rate compared with females. The present results add to the knowledge that intra‐specific choices have consequences for phytophagous insects and that the relationship between antagonists and their gynodioecious host plants is complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号