首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
TOL plasmid pWW0 specifies enzymes for the oxidative catabolism of toluene and xylenes. The upper pathway converts the aromatic hydrocarbons to aromatic carboxylic acids via corresponding alcohols and aldehydes and involves three enzymes: xylene oxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase. The synthesis of these enzymes is positively regulated by the product of xylR. Determination of upper pathway enzyme levels in bacteria carrying Tn5 insertion mutant derivatives of plasmid pWW0-161 has shown that the genes for upper pathway enzymes are organized in an operon with the following order: promoter-xylC (benzaldehyde dehydrogenase gene[s])-xylA (xylene oxygenase gene[s])-xylB (benzyl alcohol dehydrogenase gene). Subcloning of the upper pathway genes in a lambda pL promoter-containing vector and analysis of their expression in Escherichia coli K-12 confirmed this order. Two distinct enzymes were found to attack benzyl alcohol, namely, xylene oxygenase and benzyl alcohol dehydrogenase; and their catalytic activities were additive in the conversion of benzyl alcohol to benzaldehyde. The fact that benzyl alcohol is both a product and a substrate of xylene oxygenase indicates that this enzyme has a relaxed substrate specificity.  相似文献   

2.
Pseudomonas putida (arvilla) mt-2 carries genes for the catabolism of toluene, m-xylene, and p-xylene on a transmissible plasmid, TOL. These compounds are degraded by oxidation of one of the methyl substituents via the corresponding alcohols and aldehydes to benzoate and m- and p-toluates, respectively, which are then further metabolised by the meta pathway, also coded for by the TOL plasmid. The specificities of the benzyl alcohol dehydrogenase and the benzaldehyde dehydrogenase for their three respective substrates are independent of the carbon source used for growth, suggesting that a single set of nonspecific enzymes is responsible for the dissimilation of the breakdown products of toluene and m- and p-xylene. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase are coincidently and possible coordinately induced by toluene and the xylenes, and by the corresponding alcohols and aldehydes. They are not induced in cells grown on m-toluate but catechol 2,3-oxygenase can be induced by m-xylene.  相似文献   

3.
Several denitrifying Pseudomonas spp., isolated with various aromatic compounds, were tested for the ability to degrade toluene in the absence of molecular oxygen. Four out of seven strains were able to degrade toluene in the presence of N2O. More than 50% of the 14C from ring-labelled toluene was released as CO2, and up to 37% was assimilated into cell material. Furthermore it was demonstrated for two strains that they were able to grow on toluene as the sole carbon and energy source in the presence of N2O. Suspensions of cells pre-grown on toluene degraded toluene, benzaldehyde or benzoate without a lag phase and without accumulation of intermediates. p-Cresol, p-hydroxybenzylalcohol, p-hydroxybenzaldehyde or p-hydroxybenzoate was degraded much slower or only after distinct lag times. In the presence of fluoroacetate [14C]toluene was transformed to [14C]benzoate, which suggests that anaerobic toluene degradation proceeds through oxidation of the methyl side chain to benzoate.  相似文献   

4.
Toluene and related aromatic compounds are anaerobically degraded by the denitrifying bacterium Thauera sp. strain K172 via oxidation to benzoyl-CoA. The postulated initial step is methylhydroxylation of toluene to benzyl alcohol, which is either a free or enzyme-bound intermediate. Cells grown with toluene or benzyl alcohol contained benzyl alcohol dehydrogenase, which is possibly the second enzyme in the proposed pathway. The enzyme was purified from benzyl-alcohol-grown cells and characterized. It has many properties in common with benzyl alcohol dehydrogenase from Acinetobacter and Pseudomonas species. The enzyme was active as a homotetramer of 160kDa, with subunits of 40kDa. It was NAD+-specific, had an alkaline pH optimum, and was inhibited by thiol-blocking agents. No evidence for a bound cofactor was obtained. Various benzyl alcohol analogues served as substrates, whereas non-aromatic alcohols were not oxidized. The N-terminal amino acid sequence indicates that the enzyme belongs to the class of long-chain Zn2+-dependent alcohol dehydrogenases, although it appears not to contain a metal ion that can be removed by complexing agents.Dedicated to Prof. Achim Trebst  相似文献   

5.
Toluene and m-xylene were rapidly mineralized in an anaerobic laboratory aquifer column operated under continuous-flow conditions with nitrate as an electron acceptor. The oxidation of toluene and m-xylene was coupled with the reduction of nitrate, and mineralization was confirmed by trapping 14CO2 evolved from 14C-ring-labeled substrates. Substrate degradation also took place when nitrous oxide replaced nitrate as an electron acceptor, but decomposition was inhibited in the presence of molecular oxygen or after the substitution of nitrate by nitrite. The m-xylene-adapted microorganisms in the aquifer column degraded toluene, benzaldehyde, benzoate, m-toluylaldehyde, m-toluate, m-cresol, p-cresol, and p-hydroxybenzoate but were unable to metabolize benzene, naphthalene, methylcyclohexane, and 1,3-dimethylcyclohexane. Isotope-dilution experiments suggested benzoate as an intermediate formed during anaerobic toluene metabolism. The finding that the highly water-soluble nitrous oxide served as electron acceptor for the anaerobic mineralization of some aromatic hydrocarbons may offer attractive options for the in situ restoration of polluted aquifers.  相似文献   

6.
Toluene and m-xylene were rapidly mineralized in an anaerobic laboratory aquifer column operated under continuous-flow conditions with nitrate as an electron acceptor. The oxidation of toluene and m-xylene was coupled with the reduction of nitrate, and mineralization was confirmed by trapping 14CO2 evolved from 14C-ring-labeled substrates. Substrate degradation also took place when nitrous oxide replaced nitrate as an electron acceptor, but decomposition was inhibited in the presence of molecular oxygen or after the substitution of nitrate by nitrite. The m-xylene-adapted microorganisms in the aquifer column degraded toluene, benzaldehyde, benzoate, m-toluylaldehyde, m-toluate, m-cresol, p-cresol, and p-hydroxybenzoate but were unable to metabolize benzene, naphthalene, methylcyclohexane, and 1,3-dimethylcyclohexane. Isotope-dilution experiments suggested benzoate as an intermediate formed during anaerobic toluene metabolism. The finding that the highly water-soluble nitrous oxide served as electron acceptor for the anaerobic mineralization of some aromatic hydrocarbons may offer attractive options for the in situ restoration of polluted aquifers.  相似文献   

7.
A highly enriched denitrifying mixed culture transformedo-xylene cometabolically along with toluene by methyl group oxidation.o-Methyl benzaldehyde ando-methyl benzoic acid accumulated transiently as metabolic products ofo-xylene transformation. Transformation ofo-methyl benzyl alcohol ando-methyl benzaldehyde occurred independently of toluene degradation and resulted in the formation of a compound coeluting witho-methyl benzoic acid on a gas chromatograph. The cometabolic relationship between toluene ando-xylene could be attributed to a mechanism linked to the initial oxidation of the methyl group.  相似文献   

8.
The anaerobic degradation of toluene has been studied with whole cells and by measuring enzyme activities. Cultures of Pseudomonas strain K 172 were grown in mineral medium up to a cell density of 0.5 g of dry cells per liter in fed-batch culture with toluene and nitrate as the sole carbon and energy sources. A molar growth yield of 57 g of cell dry matter formed per mol toluene totally consumed was determined. The mean generation time was 24 h. The redox balance between toluene consumed (oxidation and cell material synthesis) and nitrate consumed (reduction to nitrogen gas and assimilation as NH3) was 77% of expectation if toluene was completely oxidized; this indicated that the major amount of toluene was mineralized to CO2. It was tested whether the initial reaction in anaerobic toluene degradation was a carboxylation or a dehydrogenation (anaerobic hydroxylation); the hypothetical carboxylated or hydroxylated intermediates were tested with whole cells applying the method of simultanous adaptation: cells pregrown on toluene degraded benzyl alcohol, benzaldehyde, and benzoic acid without lag, 4-hydroxybenzoate and p-cresol with a 90 min lag phase and phenylacetate after a 200 min lag phase. The cells were not at all adapted to degrade 2-methylbenzoate, 4-methylbenzoate, o-cresol, and m-cresol, nor did these compounds support growth within a few days after inoculation with cells grown on toluene. In extracts of cells anaerobically grown on toluene, benzyl alcohol dehydrogenase, benzaldehyde dehydrogenase, and benzoyl-CoA synthetase (AMP forming) activities were present. The data (1) conclusively show anaerobic growth of a pure culture on tolucne; (2) suggest that toluene is anaerobically degraded via benzoyl-CoA; (3) imply that water functions as the source of the hydroxyl group in a toluene methylhydroxylase reaction.  相似文献   

9.
Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase, two enzymes of the xylene degradative pathway encoded by the plasmid TOL of a Gram-negative bacterium Pseudomonas putida, were purified and characterized. Benzyl alcohol dehydrogenase catalyses the oxidation of benzyl alcohol to benzaldehyde with the concomitant reduction of NAD+; the reaction is reversible. Benzaldehyde dehydrogenase catalyses the oxidation of benzaldehyde to benzoic acid with the concomitant reduction of NAD+; the reaction is irreversible. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase also catalyse the oxidation of many substituted benzyl alcohols and benzaldehydes, respectively, though they were not capable of oxidizing aliphatic alcohols and aldehydes. The apparent Km value of benzyl alcohol dehydrogenase for benzyl alcohol was 220 microM, while that of benzaldehyde dehydrogenase for benzaldehyde was 460 microM. Neither enzyme contained a prosthetic group such as FAD or FMN, and both enzymes were inactivated by SH-blocking agents such as N-ethylmaleimide. Both enzymes were dimers of identical subunits; the monomer of benzyl alcohol dehydrogenase has a mass of 42 kDa whereas that of the monomer of benzaldehyde dehydrogenase was 57 kDa. Both enzymes transfer hydride to the pro-R side of the prochiral C4 of the pyridine ring of NAD+.  相似文献   

10.
A toluene-degrading sulfate-reducing bacterium, strain Tol2, was isolated from marine sediment under strictly anoxic conditions. Toluene was toxic if applied directly to the medium at concentrations higher than 0.5 mM. To provide toluene continuously at a nontoxic concentration, it was supplied in an inert hydrophobic carrier phase. The isolate had oval, sometimes motile cells (1.2 to 1.4 by 1.2 to 2.0 microns). The doubling time was 27 h. Toluene was completely oxidized to CO2, as demonstrated by measurement of the degradation balance. The presence of carbon monoxide dehydrogenase and formate dehydrogenase indicated a terminal oxidation of acetyl coenzyme A via the CO dehydrogenase pathway. The use of hypothetical intermediates of toluene degradation was tested in growth experiments and adaptation studies with dense cell suspensions. Results do not support a degradation of toluene via one of the cresols or methylbenzoates, benzyl alcohol, or phenylacetate as free intermediate. Benzyl alcohol did not serve as growth substrate; moreover, it was a strong, specific inhibitor of toluene degradation, whereas benzoate utilization was not affected by benzyl alcohol. Sequencing of 16S rRNA revealed a relationship to the metabolically dissimilar genus Desulfobacter and on a deeper level to the genus Desulfobacterium. The new genus and species Desulfobacula toluolica is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号