首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the ‘four per mil’ initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). Based on data‐driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates <0.05 Mg C ha?1 yr?1, although some hot‐spot areas showed eroded SOC >0.45 Mg C ha?1 yr?1. In comparison with a baseline without erosion, the model suggested an erosion‐induced sink of atmospheric C consistent with previous empirical‐based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of ?2.28 and +0.79 Tg yr?1 of CO2eq, respectively, depending on the value for the short‐term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity.  相似文献   

2.
基于RUSLE模型的中国土壤水蚀时空规律研究   总被引:4,自引:0,他引:4  
李佳蕾  孙然好  熊木齐  杨国成 《生态学报》2020,40(10):3473-3485
RUSLE模型是计算土壤水蚀的经典模型,在大尺度研究时参数率定比较困难。基于气候、土地覆盖、地形特征等空间分异特征,对RUSLE模型的降雨侵蚀力(R)、植被覆盖与管理因子(C)、水土保持措施因子(P)进行了率定,估算了2000、2005、2010、2015年的中国的土壤侵蚀量。结果表明:(1)土壤侵蚀强度较大的地区集中在中国长江中下游平原区、云贵高原、黄土高原区、昆仑山山麓区域,占统计总面积的9.65%。(2)土壤侵蚀明显增大的区域面积达10.36×10~4km~2,分布于新疆农田区、四川盆地、云贵高原东南部、长江中下游平原和东北平原。(3)土壤侵蚀显著改善的区域分布于黄土高原南部、秦岭地区和东南沿海地区,面积约13.6×10~4km~2。通过对RUSLE模型参数的率定,阐明了全国尺度土壤水蚀的时空分异规律,可对不同地区制定相应的土壤修复措施提供依据。  相似文献   

3.
Wildfire effects on carbon and nitrogen in inland coniferous forests   总被引:6,自引:0,他引:6  
Baird  M.  Zabowski  D.  Everett  R. L. 《Plant and Soil》1999,209(2):233-243
A ponderosa pine/Douglas-fir forest (Pinus ponderosa Dougl., Pseudotsuga menziesii (Mirb.) Franco; PP/DF) and a lodgepole pine/Engelmann spruce forest (Pinus contorta Loud., Picea engelmannii Parry ex Engelm.; LP/ES) located on the eastern slopes of the Cascade Mountains in Washington state, USA, were examined following severe wildfire to compare total soil carbon and nitrogen capitals with unburned (control) forests. One year after fire, the average C content (60 cm depth) of PP/DF and LP/ES soil was 30% (25 Mg ha-1) and 10% (7 Mg ha-1) lower than control soil. Average N content on the burned PP/DF and LP/ES plots was 46% (3.0 Mg ha-1) and 13% (0.4 Mg ha-1) lower than control soil. The reduction in C and N in the PP/DF soil was largely the result of lower nutrient capitals in the burned Bw horizons (12–60 cm depth) relative to control plots. It is unlikely that the 1994 fire substantially affected nutrient capitals in the Bw horizons; however, natural variability or past fire history could be responsible for the varied nutrient capitals observed in the subsurface soils. Surface erosion (sheet plus rill) removed between 15 and 18 Mg ha-1 of soil from the burned plots. Nutrient losses through surface erosion were 280 kg C ha-1 and 14 kg N ha-1 in the PP/DF, whereas LP/ES losses were 640 and 22 kg ha-1 for C and N, respectively. In both forests, surface erosion of C and N was 1% to 2% of the A-horizon capital of these elements in unburned soil. A bioassay (with lettuce as an indicator plant) was used to compare soils from low-, moderate- and high-severity burn areas relative to control soil. In both forests, low-severity fire increased lettuce yield by 70–100% of controls. With more severe fire, yield decreased in the LP/ES relative to the low-intensity burn soil; however, only in the high-severity treatment was yield reduced (14%) from the control. Moderate- and high-severity burn areas in the PP/DF were fertilized with 56 kg ha-1 of N four months prior to soil sampling. In these soils, yield was 70–80% greater than the control. These results suggest that short-term site productivity can be stimulated by low-severity fire, but unaffected or reduced by more severe fire in the types of forests studied. Post-fire fertilization with N could increase soil productivity where other environmental factors do not limit growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Anthropogenic soil erosion severely affects land ecosystems by reducing plant productivity and stimulating horizontal carbon and nitrogen movement at the surface. Climate warming may accelerate soil erosion by altering soil temperature, moisture, and vegetation coverage. However, no experiments have been carried out to quantify soil erosion with warming. In a long‐term field experiment, we explored how annual clipping for biofuel feedstock production and warming caused soil erosion and accompanying carbon and nitrogen losses in tallgrass prairie in Oklahoma, USA. We measured relative changes in soil surface elevation between clipped and unclipped plots with or without experimental warming. Our results show that average relative erosion depth caused by clipping was 1.65±0.09 and 0.54±0.08 mm yr?1, respectively, in warmed and control plots from November 21, 1999 to April 21, 2009. The soil erosion rate was 2148±121 g m?2 yr?1 in the warmed plots and 693±113 g m?2 yr?1 in the control plots. Soil organic carbon was lost at a rate of 69.6±5.6 g m?2 yr?1 in the warmed plots and 22.5±2.7 g m?2 yr?1 in the control plots. Total nitrogen was lost at a rate of 4.6±0.4 g m?2 yr?1 in the warmed plots and 1.4±0.1 g m?2 yr?2 in the control plots. The amount of carbon and nitrogen loss caused by clipping is equivalent to or even larger than changes caused by global change factors such as warming and rising atmospheric CO2 concentration. In addition, soil erosion rates were significantly correlated with clipping‐induced changes in soil moisture. Our results suggest that clipping for biofuel harvest results in significant soil erosion and accompanying losses of soil carbon and nitrogen, which is aggravated by warming.  相似文献   

5.
湄公河流域土壤侵蚀空间特征及其优先治理区确定   总被引:1,自引:0,他引:1  
吴芳  朱源  许丁雪  施晶晶  江源 《生态学报》2019,39(13):4761-4772
湄公河流域拥有丰富的自然生态系统,为沿岸居民提供了食物、交通等众多方面支持,在东南亚地区具有极其重要的地位。土壤侵蚀是该流域主要环境问题,易引发土地退化和河流泥沙淤积。基于气候、土壤、遥感等区域数据产品,使用通用土壤流失方程(USLE,Universal Soil Loss Equation),对湄公河流域土壤侵蚀状况及空间分布特征进行探究,并通过联合信息熵方法,确定该流域土壤侵蚀的主导因素。结果表明,湄公河流域平均土壤侵蚀模数为1.98×10~3 t km~(-2) a~(-1),属轻度侵蚀;流域内近40%区域存在不同强度的土壤侵蚀,侵蚀较严重的地区主要包括11个子流域(M4—M7、M9、T4—T6、T8、T10、T20),是未来土壤侵蚀重点治理区域。土地利用类型、坡度和海拔是该流域土壤侵蚀的主导因素,其中灌丛和裸地/稀疏植被分别为强烈和极强烈侵蚀,土壤侵蚀模数与坡度的关系为随坡度的增加呈先增加后减小的趋势,和土壤侵蚀模数与海拔的关系相同。流域内剧烈程度侵蚀发生区主要特点为:土地利用类型为裸地/稀疏植被和灌木,海拔在500—2000 m,坡度在8—25°。基于优先级理论,对湄公河子流域的优先治理次序进行排序和划分等级,共分为4个等级,达到第一级的共3个子流域。通过以上研究分析以期能为湄公河流域今后的水土保持规划和管理工作提供一定的科学参考依据。  相似文献   

6.
Soil organic carbon (SOC) displaced by soil erosion is the subject of much current research and the fundamental question, whether accelerated soil erosion is a source or sink of atmospheric CO2, remains unresolved. A toposequence of terraced fields as well as a long slope was selected from hilly areas of the Sichuan Basin, China to determine effects of soil redistribution rates and processes on SOC stocks and dynamics. Soil samples for the determination of caesium‐137 (137Cs), SOC, total N and soil particle size fractions were collected at 5 m intervals along a transect down the two toposequences. 137Cs data showed that along the long slope transect soil erosion occurred in upper and middle slope positions and soil deposition appeared in the lower part of the slope. Along the terraced transect, soil was lost over the upper parts of the slopes and deposition occurred towards the downslope boundary on each terrace, resulting in very abrupt changes in soil redistribution over short distances either side of terrace boundaries that run parallel with the contour on the steep slopes. These data reflect a difference in erosion process; along the long slope transect, water erosion is the dominant process, while in the terraced landscape soil distribution is mainly the result of tillage erosion. SOC inventories (mass per unit area) show a similar pattern to the 137Cs inventory, with relatively low SOC content in the erosional sites and high SOC content in depositional areas. However, in the terraced field landscape C/N ratios were highest in the depositional areas, while along the long slope transect, C/N ratios were highest in the erosional areas. When the samples are subdivided based on 137Cs‐derived erosion and deposition data, it is found that the erosional areas have similar C/N ratios for both toposequences, while the C/N ratios in depositional areas are significantly different from each other. These differences are attributed to the difference in soil erosion processes; tillage erosion is mainly responsible for high‐SOC inventories at depositional positions on terraced fields, whereas water erosion plays a primary role in SOC storage at depositional positions on the long slope. These data support the theory that water erosion may cause a loss of SOC due to selective removal of the most labile fraction of SOC, while on the other hand tillage erosion only transports the soil over short distances with less effect on the total SOC stock.  相似文献   

7.
To characterize the archaeal community composition in soil originating iron-manganese nodules, four types of soils—brown soil, yellow-cinnamon soil, yellow brown soil and red soil—and their associated iron-manganese nodules were collected from Queyu (QY), Zaoyang (ZY), Wuhan (WH) and Guiyang (GY), China, respectively, and subjected to quantitative polymerase chain reaction, cloning and sequencing analyses. The results showed that the archaeal 16S rRNA gene copy numbers in nodules, ranging between 3.59 × 102 and 4.17 × 103 copies g?1 dry nodule, were about 50–1000 times lower than those in their corresponding soils (1.87 × 105 to 1.08 × 106 copies g?1 dry soil), correlating with the low organic matter in the nodules, while archaea accounted for a relatively higher proportion of total prokaryote in nodules than in soils. Community composition analysis suggested that the archaeal diversity in both soils and nodules were much lower than bacterial, but archaeal community structures were similar to each other among the soils and nodules from the same location but varied among four locations, converse to the previous observation that bacterial community shifted markedly between nodules and soils as the result of habitat filtering. The archaeal communities in both soils and nodules were predominated by Thaumarchaeota Group I.1b with the relative abundance ranging between 73.88 and 94.17%, except that Euryarchaeota dominated the archaeal community in one nodule sample (WHn) developed from lake sediment. The finding shed new light on the archaeal diversity and their ecophysiology in different habitats, and further supported the opinion that archaea are more adaptable to stress and unfavorable conditions.  相似文献   

8.
喀斯特槽谷区土壤侵蚀时空演变及未来情景模拟   总被引:4,自引:0,他引:4  
以中国南方喀斯特槽谷区为研究对象,基于改进的喀斯特地区土壤侵蚀算法,定量分析了槽谷区土壤侵蚀时空演变特征,并利用CA-Markov模型对土壤侵蚀状况的未来情景进行预测。结果表明:(1)喀斯特槽谷区2000—2015年土壤侵蚀总量由61.86×10~7 t/a减少至2.97×10~7 t/a,区域年平均侵蚀模数由21.61 t hm~(-2) a~(-1)降低至1.04 t hm~(-2) a~(-1),轻度及轻度以下侵蚀等级的面积增加了76.13×10~5 hm~2,重度及重度以上侵蚀面积减少了46.90×10~5 hm~2,侵蚀状况明显减轻;(2)不同地貌类型之间的土壤侵蚀状况存在一定差异,平原地区侵蚀模数最小,盆地地区侵蚀模数最大,达到平原地区侵蚀模数的近4倍;(3) 2000—2015年间,槽谷区轻度及轻度以上侵蚀等级都逐渐向微度侵蚀等级转移,土壤侵蚀等级由高等级向低等级转移率达到了98%以上,总体呈现出好转的趋势;(4)基于CA-Markov模型模拟槽谷区2020年土壤侵蚀等级的未来演变趋势,其总体Kappa系数达到了0.9788,一致性最佳;(5)到2020年,槽谷区土壤侵蚀等级基本为微度和轻度侵蚀,土壤侵蚀状况将进一步改善。本研究的结果可为喀斯特槽谷区当前土壤侵蚀治理成效的评价以及未来的防治提供理论和数据方面的参考。  相似文献   

9.
Soil nutrients contribute to ecosystem-level processes and are important for productivity, community structure, and fertility in terrestrial ecosystems. Crude oil–stressed agricultural soil was subjected to phytoremediation for 12 weeks, and the nutrient status thereafter was characterized to investigate the inherent effects on such soils in relation to nutrient mineralization and community shifts. Manure additions significantly increased Mg, Na, NO3-N, PO4 ?, and SO4 2? contents along with pH values. Accumulated biomass and leaf area measurements were used to monitor nutrient cycles upon amendment addition. Experimental results indicate that after 90 days, the biotreatment had significantly higher levels of monitored nutrients (above 2500 mg/kg NO3-N) than the unplanted control (<500 mg/kg NO3-N), and compared well with the uncontaminated control. The results from this study highlighted inherent advantages of phytoremediation as a soil cleanup technique in terms of soil quality recovery and preservation.  相似文献   

10.
宫晨  吴文瑾  段怡如  刘海江  何金军  孙聪  蒋倩 《生态学报》2022,42(11):4389-4400
为支撑我国重点生态功能区生态效益补偿工作,以半物理水土模型RMMF (The Revised Morgan, Morgan and Finney Model)为基础,通过对模型部分输入物理量进行遥感化改进建立了遥感RMMF模型(RS-RMMF)。为在评价中进一步排除气象要素波动带来的水土流失量变化,通过RS-RMMF模型构建了单位降水截留率、单位径流冲蚀量以及单位径流运输量3项评价指标来综合评价区域生态系统本身的水土保持能力。研究选取了《全国主体功能区规划》中的桂黔滇喀斯特功能区为典型区,分别基于上述评价指标和经典RUSLE (Revised Universal Soil Loss Equation)模型开展了2011年至2019年水土保持功能计算与对比。结果表明:相比2011年,2019年喀斯特功能区的降水截留率PI0升高1.94%,径流冲蚀量H0下降5.96×10-4 Mg/hm~2,径流运输量TC0下降6.0×10-7Mg/hm~2,水土保持功能综合得分增加0.83,水土...  相似文献   

11.
耦合过程和景观格局的土壤侵蚀水环境影响评价   总被引:1,自引:0,他引:1  
刘宇  吴炳方  曾源  张磊 《生态学杂志》2013,24(9):2581-2589
将景观格局的作用纳入到土壤侵蚀的生态环境影响评估中,具有方法上的实用意义,可为水体泥沙源区识别、评价立地侵蚀对目标水体的泥沙输出风险和流域景观格局对土壤流失抑制潜力提供一种途径.本文将RUSLE模型作为模拟立地土壤侵蚀强度的工具,考虑植被覆盖和地形对泥沙输送的阻滞作用,从点(栅格)和子流域两个尺度,采用景观格局表征方法定量评估南水北调中线水源区土壤侵蚀对河流、水库的影响.在点(栅格)尺度提出土壤侵蚀影响强度(I)指标表征土壤侵蚀对水体的泥沙输出风险;在流域尺度利用反映流域景观格局留滞泥沙能力的渗透指数(LI)指示泥沙进入水体的风险.结果表明: 耦合景观格局信息和侵蚀过程的指标能空间分布式地有效反映立地土壤侵蚀对水体泥沙输入的影响强度;LI与流域平均景观阻滞、平均植被覆盖度呈显著的指数关系, 子流域输沙模数与LI呈显著的指数回归关系.说明基于土壤侵蚀过程表征景观格局、将景观格局信息与景观土壤保持功能结合起来的评价方法,可为土壤侵蚀风险评价提供新途径.  相似文献   

12.
武汉市位于桐柏山大别山国家级水土流失预防区与幕阜山省级水土流失治理区之间,其土壤侵蚀问题对长江中游生态安全具有重要影响。基于2009-2018年武汉市蔡店、磨盘山、西湖流域、燕子山等4个水土保持监测站35个径流小区的观测数据(139组),定量分析了坡度、侵蚀性降水量、土地利用和水土保持措施对土壤侵蚀的影响,并借鉴USLE模型识别土壤侵蚀主导因子。结果表明,裸地小区的平均土壤侵蚀模数最高(2597.57 t km-2 a-1),其次是经济林、草地和耕地小区且三者的侵蚀模数相差不大,土壤侵蚀模数与侵蚀性降雨量、坡度之间呈显著二元线性或幂函数关系;与天然植被小区相比,植物篱(草带、茶树、紫穗槐)及石坎梯田措施均显著降低了土壤侵蚀模数,其中植物篱措施的效果更优,且草带植物篱小区的侵蚀模数最低(46.13 t km-2 a-1);3个坡度等级(0-10°、10-20°、20-25°)小区平均侵蚀模数分别为892.07、911.15、2087.60 t km-2 a-1,表明坡度超过20°后土壤侵蚀严重加剧;武汉市土壤侵蚀的主导因子为水土保持措施、植被覆盖与管理因子。研究结果可为武汉市水土保持措施合理布设及侵蚀预报模型的完善提供依据,基于径流小区长期观测数据的土壤侵蚀定量研究值得进一步深入。  相似文献   

13.
Uplift,Erosion, and Phosphorus Limitation in Terrestrial Ecosystems   总被引:1,自引:0,他引:1  
ABSTRACT Primary productivity on old, weathered soils often is assumed to be limited by phosphorus (P), especially in the lowland tropics where climatic conditions promote the rapid depletion of rock-derived nutrients. This assumption is based on a static view of soils weathering in place with no renewal of the bedrock source. In reality, advection of material through the soil column introduces a spatially variable supply of rock-derived nutrients. This flux is dependent on the residence time of soil, which can range from a few hundred years in rapidly uplifting collisional mountain belts to tens of millions of years in tectonically quiescent tropical cratons. We modeled the effects of tectonic uplift, erosion, and soil depth on the advection of P through the soil column and P availability, calibrating rate of change in biologically available P over time with data from two basaltic chronosequences in Hawai’i and a series of greywacke terraces in New Zealand. Combining our model with the global distribution of tectonic uplift rates and soil depths, we identified tectonic settings that are likely to support P-depleted ecosystems—assuming that tectonic uplift and erosion are balanced (that is, landscape development has reached steady state). The model captures the occurrence of transient P limitation in rapidly uplifting young ecosystems where mineral weathering is outpaced by physical erosion—a likely occurrence where biological N fixation is important. However, we calculate that P depletion is unlikely in areas of moderate uplift, such as most of Central America and Southeast Asia, due to the continuous advection of P into the rooting zone. Finally, where soil advection is slow, such as the Amazon Basin, we expect widespread P depletion in the absence of exogenous nutrient inputs.  相似文献   

14.
The global magnitude (Pg) of soil organic carbon (SOC) is 677 to 0.3‐m, 993 to 0.5‐m, and 1,505 to 1‐m depth. Thus, ~55% of SOC to 1‐m lies below 0.3‐m depth. Soils of agroecosystems are depleted of their SOC stock and have a low use efficiency of inputs of agronomic yield. This review is a collation and synthesis of articles published in peer‐reviewed journals. The rates of SOC sequestration are scaled up to the global level by linear extrapolation. Soil C sink capacity depends on depth, clay content and mineralogy, plant available water holding capacity, nutrient reserves, landscape position, and the antecedent SOC stock. Estimates of the historic depletion of SOC in world soils, 115–154 (average of 135) Pg C and equivalent to the technical potential or the maximum soil C sink capacity, need to be improved. A positive soil C budget is created by increasing the input of biomass‐C to exceed the SOC losses by erosion and mineralization. The global hotspots of SOC sequestration, soils which are farther from C saturation, include eroded, degraded, desertified, and depleted soils. Ecosystems where SOC sequestration is feasible include 4,900 Mha of agricultural land including 332 Mha equipped for irrigation, 400 Mha of urban lands, and ~2,000 Mha of degraded lands. The rate of SOC sequestration (Mg C ha?1 year?1) is 0.25–1.0 in croplands, 0.10–0.175 in pastures, 0.5–1.0 in permanent crops and urban lands, 0.3–0.7 in salt‐affected and chemically degraded soils, 0.2–0.5 in physically degraded and prone to water erosion, and 0.05–0.2 for those susceptible to wind erosion. Global technical potential of SOC sequestration is 1.45–3.44 Pg C/year (2.45 Pg C/year).  相似文献   

15.
Differences in mineral nutrient composition of soils have been considered to affect health and population characteristics of free-ranging animals, particularly herbivores. Contents of Ca, Mg, and K in hair of female fawn white-tailed deer (Odocoileus virginianus) were measured for eight consecutive years to determine if soil and annual effects occurred in two areas of contrasting soil productivity in Illinois. Soil differences may account for some of the autumnal weight difference (7.2 kg for 4 yrs of observation) observed in fawn does from the areas. Ca, Mg, and K were assayed, because these macronutrients were known to differ in soils of the areas and were presumed to differ in forages. In 6 of the 8 yrs, at least one element was significantly different (P ≤ 0.05) between areas. Significant (P ≤ 0.05) differences for K occurred in 5 yr, for Ca in 4 yr, and for Mg in 2 yr. Ca and Mg were lower in hair in 7 yr from deer collected from the area in which extractable Ca and Mg were higher in soils; that is, hair Ca and Mg levels tended to be inversely related to levels of plant-available Ca and Mg in soil. For 7 of the 8 yr, K content was lower in hair from the area of lower soil K content. Within one area, between-year differences occurred for Ca and K and for Ca and Mg in the other area. Between-year differences in diet selection and annual climatic effects on mineral uptake of forages, among other factors, may account for some of the latter differences. Results for hair analyses suggest that macronutrient differences in Ca, Mg, and K occur in the diets of these populations and may account for some of the weight difference observed between the areas.  相似文献   

16.
Effects of soil erosion on crop productivity   总被引:2,自引:0,他引:2  
Soil erosion and the effects of soil erosion on crop productivity have become emotional issues and have attracted the attention of agriculturists, environmentalists, and the public in general. In spite of heavy investments in research and development, the global rates of accelerated erosion are now presumbly higher than ever before. However, the data from available records obtained by diverse methods are uncomparable, unreliable, confusing, and often vary by several orders of magnitude. Reports of erosion‐caused alterations in crop productivity and soil properties are also contradictory and subjective. In addition to the lack of standardized methodology in evaluating soil erosion and its effects on crops, controversial interpretations are attributed to differences in soil profile characteristics, nutrient status, crops grown, and prevailing climatic conditions. Although erosion is generally associated wtih yield reductions, there are examples of where soil erosion has had no effect or has had a positive effect on crop production. Accelerated erosion affects productivity both directly and indirectly. Directly, the erosion‐induced reduction in crop yields is attributed to loss of rooting depth, degradation of soil structure, decrease in plant‐available water reserves, reduction in organic matter, and nutrient imbalance. Depending on soil properties and the degree of degradation, adverse effects of erosion on crop yields can be mostly compensated for by additional inputs of macronu‐trients (N, P, K) and macronutrients plus organic matter, by supplemental applications of some micronu‐trients, and by irrigation. For some soils, e.g., tropical soils, crop yields from severely eroded soils are significantly lower than those from uneroded lands and are often uneconomic in spite of additional inputs. Specific examples of yield alterations are given in relation to the loss of plant nutrients, soil water reserves, and alterations in soil properties. Criteria for soil‐loss tolerance are discussed, and productivity restoration of eroded soils is reviewed in relation to soil organic matter content and nutrient requirments. Research and development priorities are presented.  相似文献   

17.
在自然要素和社会经济要素交互作用下,科学评估退耕还林工程对土壤侵蚀的影响,对生态修复政策的可持续性具有重要意义。在利用RUSLE模型评估陕西省土壤侵蚀强度时空演变特征的基础上,构建纳入社会经济因素的退耕还林防治土壤侵蚀效应研究框架,基于面板数据固定效应模型,探究地理特征对退耕还林工程防治土壤侵蚀的影响。结果表明:(1)2000—2015年陕西省土壤侵蚀强度显著降低,全省土壤侵蚀总量由2000年34166.42万t,下降至2015年28260.69万t,区域土壤侵蚀强度及其时空变化特征存在显著异质性,陕北地区土壤侵蚀水平最高,同时下降也最为显著。(2)退耕还林工程对防治土壤侵蚀有显著的正向影响,表现为投资金额每增加1万元,土壤侵蚀总量下降26.30t,且资金投入的生态效益存在显著滞后效应。(3)地理特征在退耕还林工程防治土壤侵蚀效应中存在显著调节作用,相较关中和陕南地区,陕北地区退耕还林工程防治土壤侵蚀效应更为显著。坡度和降雨对工程的防治土壤侵蚀效应存在显著负向调节作用,而日照时间则表现出正向调节作用。决策者应充分考虑自然地理因素和社会经济因素对生态系统服务的复合作用机理以实现生态修复政...  相似文献   

18.
Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha?1 after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ13C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ13C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The 13C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ13C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ13C values with depth.  相似文献   

19.
Excessive corn (Zea mays L.) stover removal for biofuel and other uses may adversely impact soil and crop production. We assessed the effects of stover removal at 0, 25, 50, 75, and 100% from continuous corn on water erosion, corn yield, and related soil properties during a 3‐year study under irrigated and no‐tillage management practice on a Ulysses silt loam at Colby, irrigated and strip till management practice on a Hugoton loam at Hugoton, and rainfed and no‐tillage management practice on a Woodson silt loam at Ottawa in Kansas, USA. The slope of each soil was <1%. One year after removal, complete (100%) stover removal resulted in increased losses of sediment by 0.36–0.47 Mg ha?1 at the irrigated sites, but, at the rainfed site, removal at rates as low as 50% resulted in increased sediment loss by 0.30 Mg ha?1 and sediment‐associated carbon (C) by 0.29 kg ha?1. Complete stover removal reduced wet aggregate stability of the soil at the irrigated sites in the first year after removal, but, at the rainfed site, wet aggregate stability was reduced in all years. Stover removal at rates ≥ 50% resulted in reduced soil water content, increased soil temperature in summer by 3.5–6.8 °C, and reduced temperature in winter by about 0.5 °C. Soil C pool tended to decrease and crop yields tended to increase with an increase in stover removal, but 3 years after removal, differences were not significant. Overall, stover removal at rates ≥50% may enhance grain yield but may increase risks of water erosion and negatively affect soil water and temperature regimes in this region.  相似文献   

20.
Agricultural management has received increased attention over the last decades due to its central role in carbon (C) sequestration and greenhouse gas mitigation. Yet, regardless of the large body of literature on the effects of soil erosion by tillage and water on soil organic carbon (SOC) stocks in agricultural landscapes, the significance of soil redistribution for the overall C budget and the C sequestration potential of land management options remains poorly quantified. In this study, we explore the role of lateral SOC fluxes in regional scale modelling of SOC stocks under three different agricultural management practices in central Belgium: conventional tillage (CT), reduced tillage (RT) and reduced tillage with additional carbon input (RT+i). We assessed each management scenario twice: using a conventional approach that did not account for lateral fluxes and an alternative approach that included soil erosion‐induced lateral SOC fluxes. The results show that accounting for lateral fluxes increased C sequestration rates by 2.7, 2.5 and 1.5 g C m?2 yr?1 for CT, RT and RT+i, respectively, relative to the conventional approach. Soil redistribution also led to a reduction of SOC concentration in the plough layer and increased the spatial variability of SOC stocks, suggesting that C sequestration studies relying on changes in the plough layer may underestimate the soil's C sequestration potential due to the effects of soil erosion. Additionally, lateral C export from cropland was in the same of order of magnitude as C sequestration; hence, the fate of C exported from cropland into other land uses is crucial to determine the ultimate impact of management and erosion on the landscape C balance. Consequently, soil management strategies targeting C sequestration will be most effective when accompanied by measures that reduce soil erosion given that erosion loss can balance potential C uptake, particularly in sloping areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号