首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Exposure of endothelial cells to vascular endothelial growth factor (VEGF) induced tyrosine phosphorylation of focal adhesion kinase (FAK) on site Tyr(407), an effect that required the association of VEGF receptor 2 (VEGFR2) with HSP90. The association of VEGFR2 with HSP90 involved the last 130 amino acids of VEGFR2 and was blocked by geldanamycin, a specific inhibitor of HSP90. Moreover, geldanamycin inhibited the VEGF-induced activation of the small GTPase RhoA, which resulted in an inhibition of phosphorylation of FAK on site Tyr(407). In this context, the inhibition of RhoA kinase (ROCK) with Y27632 or by expression of dominant negative forms of RhoA or ROCK impaired the VEGF-induced phosphorylation of Tyr(407) within FAK. In contrast to phosphorylation of Tyr(861), the phosphorylation of site Tyr(407) was insensitive to Src kinase inhibition by 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo[3,4-d] pyrimidine (PP2). We also found that the recruitment of paxillin to FAK was inhibited by geldanamycin but not by PP2, whereas both geldanamycin and PP2 inhibited the recruitment of vinculin to FAK. In accordance, the recruitment of paxillin and vinculin to FAK was inhibited in cells that express the mutant FAK-Y407F, whereas the expression of the mutant Y861F inhibited the recruitment of paxillin but not of vinculin. Importantly, cell migration was abolished in cells in which the signal from the VEGFR2-HSP90 pathway was blocked by the expression of Delta130VEGFR2, a deletant of VEGFR2 that does not associate with HSP90. Our findings underscore for the first time the key role played by the VEGFR2-HSP90-RhoA-ROCK-FAK/Tyr(407) pathway in transducing the VEGF signal that leads to the assembly of focal adhesions and endothelial cell migration.  相似文献   

2.
Vascular endothelial growth factor A (VEGF-A)-induced signaling through VEGF receptor 2 (VEGFR2) regulates both physiological and pathological angiogenesis in mammals. However, the temporal and spatial mechanism underlying VEGFR2-mediated intracellular signaling is not clear. Here, we define a pathway for VEGFR2 trafficking and proteolysis that regulates VEGF-A-stimulated signaling and endothelial cell migration. Ligand-stimulated VEGFR2 activation and ubiquitination preceded proteolysis and cytoplasmic domain removal associated with endosomes. A soluble VEGFR2 cytoplasmic domain fragment displayed tyrosine phosphorylation and activation of downstream intracellular signaling. Perturbation of endocytosis by the depletion of either clathrin heavy chain or an ESCRT-0 subunit caused differential effects on ligand-stimulated VEGFR2 proteolysis and signaling. This novel VEGFR2 proteolysis was blocked by the inhibitors of 26S proteasome activity. Inhibition of proteasome activity prolonged VEGF-A-induced intracellular signaling to c-Akt and endothelial nitric oxide synthase (eNOS). VEGF-A-stimulated endothelial cell migration was dependent on VEGFR2 and VEGFR tyrosine kinase activity. Inhibition of proteasome activity in this assay stimulated VEGF-A-mediated endothelial cell migration. VEGFR2 endocytosis, ubiquitination and proteolysis could also be stimulated by a protein kinase C-dependent pathway. Thus, removal of the VEGFR2 carboxyl terminus linked to phosphorylation, ubiquitination and trafficking is necessary for VEGF-stimulated endothelial signaling and cell migration.  相似文献   

3.
The role of hypoxia on endothelial cell function and response to growth factors is unknown. Here, we tested the hypothesis that hypoxia re-programs endothelial function by modulating vascular endothelial growth factor receptor levels which in turn alter intracellular signaling and cell function. Hypoxia stimulated VEGF-A and VEGFR1 expression but decreased VEGFR2 levels in endothelial cells. During hypoxia, plasma membrane VEGFR1 levels were elevated whereas VEGFR2 levels were depleted. One functional consequence of hypoxia is a reduction in VEGF-A-stimulated and VEGFR2-regulated intracellular signaling including lowered endothelial nitric oxide synthase activation. Venous, arterial and capillary endothelial cells subjected to hypoxia all exhibited reduced cell migration in response to VEGF-A. A mechanistic explanation is that VEGFR1:VEGFR2 ratio is substantially increased during hypoxia to block VEGF-A-stimulated and VEGFR2-regulated endothelial responses to maximize cell viability and recovery.  相似文献   

4.
Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states.  相似文献   

5.
In endothelial cells, vascular endothelial growth factor (VEGF) induces an accumulation of stress fibers associated with new actin polymerization and rapid formation of focal adhesions at the ventral surface of the cells. This cytoskeletal reorganization results in an intense motogenic activity. Using porcine endothelial cells expressing one or the other type of the VEGF receptors, VEGFR1 or VEGFR2, or human umbilical vein endothelial cells pretreated with a VEGFR2 neutralizing antibody, we show that VEGFR2 is responsible for VEGF-induced activation of the stress-activated protein kinase-2/p38 (SAPK2/p38), phosphorylation of focal adhesion kinase (FAK), and enhanced migratory activity. Activation of SAPK2/p38 triggered actin polymerization whereas FAK, which was phosphorylated independently of SAPK2/p38, initiated assembly of focal adhesions. Both processes contributed to the formation of stress fibers. Geldanamycin, an inhibitor of HSP90 blocked tyrosine phosphorylation of FAK, assembly of focal adhesions, actin reorganization, and cell migration, all of which were reversed by overexpressing HSP90. We conclude that VEGFR2 mediates the physiological effect of VEGF on cell migration and that two independent pathways downstream of VEGFR2 regulate actin-based motility. One pathway involves SAPK2/p38 and leads to enhanced actin polymerization activity. The other involves HSP90 as a permissive signal transduction factor implicated in FAK phosphorylation and assembly of focal adhesions.  相似文献   

6.
Mutations in the C terminus of the serotonin transporter (SERT) disrupt folding and export from the endoplasmic reticulum. Here we examined the hypothesis that a cytosolic heat shock protein relay was recruited to the C terminus to assist folding of SERT. This conjecture was verified by the following observations. (i) The proximal portion of the SERT C terminus conforms to a canonical binding site for DnaK/heat shock protein of 70 kDa (HSP70). A peptide covering this segment stimulated ATPase activity of purified HSP70-1A. (ii) A GST fusion protein comprising the C terminus of SERT pulled down HSP70-1A. The interaction between HSP70-1A and SERT was visualized in live cells by Förster resonance energy transfer: it was restricted to endoplasmic reticulum-resident transporters and enhanced by an inhibitor that traps HSP70-1A in its closed state. (iv) Co-immunoprecipitation confirmed complex formation of SERT with HSP70-1A and HSP90β. Consistent with an HSP relay, co-chaperones (e.g. HSC70-HSP90-organizing protein) were co-immunoprecipitated with the stalled mutants SERT-R607A/I608A and SERT-P601A/G602A. (v) Depletion of HSP90β by siRNA or its inhibition increased the cell surface expression of wild type SERT and SERT-F604Q. In contrast, SERT-R607A/I608A and SERT-P601A/G602A were only rendered susceptible to inhibition of HSP70 and HSP90 by concomitant pharmacochaperoning with noribogaine. (vi) In JAR cells, inhibition of HSP90 also increased the levels of SERT, indicating that endogenously expressed transporter was also susceptible to control by HSP90β. These findings support the concept that the folding trajectory of SERT is sampled by a cytoplasmic chaperone relay.  相似文献   

7.
The human endothelial vascular endothelial growth factor receptor 2 (VEGFR2/kinase domain region, KDR/fetal liver kinase-1, Flk-1) tyrosine kinase receptor is essential for VEGF-mediated physiological responses including endothelial cell proliferation, migration and survival. How VEGFR2 kinase activation and trafficking are co-coordinated in response to VEGF-A is not known. Here, we elucidate a mechanism for endothelial VEGFR2 response to VEGF-A dependent on constitutive endocytosis co-ordinated with ligand-activated ubiquitination and proteolysis. The selective VEGFR kinase inhibitor, SU5416, blocked the endosomal sorting required for VEGFR2 trafficking and degradation. Inhibition of VEGFR2 tyrosine kinase activity did not block plasma membrane internalization but led to endosomal accumulation. Lysosomal protease activity was required for ligand-stimulated VEGFR2 degradation. Activated VEGFR2 codistributed with the endosomal hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)/signal-transducing adaptor molecule (STAM) complex in a ligand and time-dependent manner, implying a role for this factor in sorting of ubiquitinated VEGFR2. Increased tyrosine phosphorylation of the Hrs subunit in response to VEGF-A links VEGFR2 activation and Hrs/STAM function. In contrast, VEGFR2 in quiescent cells was present on both the endothelial plasma membrane and early endosomes, suggesting constitutive recycling between these two compartments. This pathway was clathrin-linked and dependent on the AP2 adaptor complex as the A23 tyrphostin inhibited VEGFR2 trafficking. We propose a mechanism whereby the transition of endothelial VEGFR2 from a constitutive recycling itinerary to a degradative pathway explains ligand-activated receptor degradation in endothelial cells. This study outlines a mechanism to control the VEGF-A-mediated response within the vascular system.  相似文献   

8.
Abstract

Vascular endothelial growth factor receptors (VEGFR) are considered essential for angiogenesis. The VEGFR‐family proteins consist of VEGFR‐1/Flt‐1, VEGFR‐2/KDR/Flk‐1, and VEGFR‐3/Flt‐4. Among these, VEGFR‐2 is thought to be principally responsible for angiogenesis. However, the precise role of VEGFRs1–3 in endothelial cell biology and angiogenesis remains unclear due in part to the lack of VEGFR‐specific inhibitors. We used the newly described, highly selective anilinoquinazoline inhibitor of VEGFR‐2 tyrosine kinase, ZM323881 (5‐[[7‐(benzyloxy) quinazolin‐4‐yl]amino]‐4‐fluoro‐2‐methylphenol), to explore the role of VEGFR‐2 in endothelial cell function. Consistent with its reported effects on VEGFR‐2 [IC(50) < 2 nM], ZM323881 inhibited activation of VEGFR‐2, but not of VEGFR‐1, epidermal growth factor receptor (EGFR), platelet‐derived growth factor receptor (PDGFR), or hepatocyte growth factor (HGF) receptor. We studied the effects of VEGF on human aortic endothelial cells (HAECs), which express VEGFR‐1 and VEGFR‐2, but not VEGFR‐3, in the absence or presence of ZM323881. Inhibition of VEGFR‐2 blocked activation of extracellular regulated‐kinase, p38, Akt, and endothelial nitric oxide synthetase (eNOS) by VEGF, but did not inhibit p38 activation by the VEGFR‐1‐specific ligand, placental growth factor (PlGF). Inhibition of VEGFR‐2 also perturbed VEGF‐induced membrane extension, cell migration, and tube formation by HAECs. Vascular endothelial growth factor receptor‐2 inhibition also reversed VEGF‐stimulated phosphorylation of CrkII and its Src homology 2 (SH2)‐binding protein p130Cas, which are known to play a pivotal role in regulating endothelial cell migration. Inhibition of VEGFR‐2 thus blocked all VEGF‐induced endothelial cellular responses tested, supporting that the catalytic activity of VEGFR‐2 is critical for VEGF signaling and/or that VEGFR‐2 may function in a heterodimer with VEGFR‐1 in human vascular endothelial cells.  相似文献   

9.
Effects of inhibitors of the heat shock protein 90 (HSP90) chaperone activity and inhibitors of the heat shock protein (HSP) expression on sensitivity of HeLa tumor cells to hyperthermia were studied. It was found that nanomolar concentrations of inhibitors of the HSP90 activity (17AAG or radicicol) slowed down the chaperone-dependent reactivation of a thermolabile reporter (luciferase) in heat-stressed HeLa cells and slightly enhanced their death following the incubation for 60 min at 43°C. The inhibitors of HSP90 activity stimulated de novo induction of additional chaperones (HSP70 and HSP27) that significantly increased intracellular HSP levels. Treatment of the cells with 17AAG or radicicol along with an inhibitor of the HSP induction (e.g. quercetin or triptolide, or NZ28) completely prevented the increase in the intracellular chaperone levels resulting from the inhibition of HSP90 activity and subsequent heating. Combination of all three treatments (inhibition of the HSP90 activity + inhibition of the HSP induction + heating at 43°C for 60 min) resulted in more potent inhibition of the reporter reactivation and a sharp (2–3-fold) increase in cell death. Such enhancement of the cytotoxicity may be attributed to the “chaperone deficiency” when prior to heat stress both the functional activity of constitutive HSP90 and the expression of additional (inducible) chaperones are blocked in the cells.  相似文献   

10.
Angiogenesis, the formation of new blood vessels from pre-existing ones, is essential for development, wound healing, and tumor progression. The VEGF pathway plays irreplaceable roles during angiogenesis, but how other signals cross-talk with and modulate VEGF cascades is not clearly elucidated. Here, we identified that Gpr126, an endothelial cell-enriched gene, plays an important role in angiogenesis by regulating endothelial cell proliferation, migration, and tube formation. Knockdown of Gpr126 in the mouse retina resulted in the inhibition of hypoxia-induced angiogenesis. Interference of Gpr126 expression in zebrafish embryos led to defects in intersegmental vessel formation. Finally, we identified that GPR126 regulated the expression of VEGFR2 by targeting STAT5 and GATA2 through the cAMP-PKA-cAMP-response element-binding protein signaling pathway during angiogenesis. Our findings illustrate that GPR126 modulates both physiological and pathological angiogenesis through VEGF signaling, providing a potential target for the treatment of angiogenesis-related diseases.  相似文献   

11.
Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in approximately 6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene expression. These studies have implications in the optimal use of recombinant AAV vectors in human gene therapy.  相似文献   

12.
The adenosine A2A receptor is a prototypical rhodopsin-like G protein-coupled receptor but has several unique structural features, in particular a long C terminus (of >120 residues) devoid of a palmitoylation site. It is known to interact with several accessory proteins other than those canonically involved in signaling. However, it is evident that many more proteins must interact with the A2A receptor, if the trafficking trajectory of the receptor is taken into account from its site of synthesis in the endoplasmic reticulum (ER) to its disposal by the lysosome. Affinity-tagged versions of the A2A receptor were expressed in HEK293 cells to identify interacting partners residing in the ER by a proteomics approach based on tandem affinity purification. The receptor-protein complexes were purified in quantities sufficient for analysis by mass spectrometry. We identified molecular chaperones (heat-shock proteins HSP90α and HSP70-1A) that interact with and retain partially folded A2A receptor prior to ER exit. Complex formation between the A2A receptor and HSP90α (but not HSP90β) and HSP70-1A was confirmed by co-affinity precipitation. HSP90 inhibitors also enhanced surface expression of the receptor in PC12 cells, which endogenously express the A2A receptor. Finally, proteins of the HSP relay machinery (e.g. HOP/HSC70-HSP90 organizing protein and P23/HSP90 co-chaperone) were recovered in complexes with the A2A receptor. These observations are consistent with the proposed chaperone/coat protein complex II exchange model. This posits that cytosolic HSP proteins are sequentially recruited to folding intermediates of the A2A receptor. Release of HSP90 is required prior to recruitment of coat protein complex II components. This prevents premature ER export of partially folded receptors.  相似文献   

13.
14.
Luo S  Zhang B  Dong XP  Tao Y  Ting A  Zhou Z  Meixiong J  Luo J  Chiu FC  Xiong WC  Mei L 《Neuron》2008,60(1):97-110
Rapsyn, an acetylcholine receptor (AChR)-interacting protein, is essential for synapse formation at the neuromuscular junction (NMJ). Like many synaptic proteins, rapsyn turns over rapidly at synapses. However, little is known about molecular mechanisms that govern rapsyn stability. Using a differential mass-spectrometry approach, we identified heat-shock protein 90beta (HSP90beta) as a component in surface AChR clusters. The HSP90beta-AChR interaction required rapsyn and was stimulated by agrin. Inhibition of HSP90beta activity or expression, or disruption of its interaction with rapsyn attenuated agrin-induced formation of AChR clusters in vitro and impaired the development and maintenance of the NMJ in vivo. Finally, we showed that HSP90beta was necessary for rapsyn stabilization and regulated its proteasome-dependent degradation. Together, these results indicate a role of HSP90beta in NMJ development by regulating rapsyn turnover and subsequent AChR cluster formation and maintenance.  相似文献   

15.
16.
Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific inhibitors would be of great value. To test this possibility, we screened our molecular library using recombinant kinase assays and identified the previously described compound VCC251801 with strong inhibitory effect on both VEGFR2 and PKD1. We further analyzed the effect of VCC251801 in the endothelium-derived EA.hy926 cell line and in different inflammatory cell types. In EA.hy926 cells, VCC251801 potently inhibited the intracellular activation and signaling of VEGFR2 and PKD1 which inhibition eventually resulted in diminished cell proliferation. In this model, our compound was also an efficient inhibitor of in vitro angiogenesis by interfering with endothelial cell migration and tube formation processes. Our results from functional assays in inflammatory cellular models such as neutrophils and mast cells suggested an anti-inflammatory effect of VCC251801. The neutrophil study showed that VCC251801 specifically blocked the immobilized immune-complex and the adhesion dependent TNF-α -fibrinogen stimulated neutrophil activation. Furthermore, similar results were found in mast cell degranulation assay where VCC251801 caused significant reduction of mast cell response. In summary, we described a novel function of a multiple kinase inhibitor which strongly inhibits the VEGFR2-PKD1 signaling and might be a novel inhibitor of pathological inflammatory pathways.  相似文献   

17.
The hippocampal glucocorticoid receptor (GR) is involved in negative feedback regulation of the hypothalamo-pituitary-adrenal axis and is believed to transduce the deleterious effects of glucocorticoids in depression and age-related memory loss. Regulation and intracellular trafficking of the GR are critical determinants of GR action in both health and disease. Here, we show dynamic regulation of GR and its interaction with its principal intracellular chaperone, heat-shock protein (HSP) 90, across the circadian cycle. Our initial experiments indicate that cytosolic hippocampal GR protein is elevated in the evening (PM), whereas nuclear GR and cytosolic HSP90, HSP70 and heat-shock cognate 70 (HSC70), are unchanged. In contrast, there are no changes in examined proteins in the hypothalamus. Immunoprecipitation experiments reveal increased GR-HSP90 associations in the hippocampus in the PM, whereas binding in the hypothalamus is decreased in the PM. Given that GR requires HSP90 for ligand binding, the data suggest that circadian GR signaling capacity is regulated in a region-specific pattern.  相似文献   

18.
The Golgi apparatus is a highly dynamic organelle which frequently undergoes morphological changes in certain normal physiological processes or in response to stress. The mechanisms are largely not known. We have found that heat shock of Panc1 cells expressing core 2 N-acetylglucosaminyltransferase-M (Panc1-C2GnT-M) induces Golgi disorganization by increasing non-muscle myosin IIA (NMIIA)–C2GnT-M complexes and polyubiquitination and proteasomal degradation of C2GnT-M. These effects are prevented by inhibition or knockdown of NMIIA. Also, the speed of Golgi fragmentation induced by heat shock is found to be positively correlated with the levels of C2GnT-M in the Golgi. The results are reproduced in LNCaP cells expressing high levels of two endogenous glycosyltransferases—core 2 N-acetylglucosaminyltransferase-L:1 and β-galactoside:α2-3 sialyltransferase 1. Further, during recovery after heat shock, Golgi reassembly as monitored by a Golgi matrix protein giantin precedes the return of C2GnT-M to the Golgi. The results are consistent with the roles of giantin as a building block of the Golgi architecture and a docking site for transport vesicles carrying glycosyltransferases. In addition, inhibition/depletion of HSP70 or HSP90 in Panc1-C2GnT-M cells also causes an increase of NMIIA–C2GnT-M complexes and NMIIA-mediated Golgi fragmentation but results in accumulation or degradation of C2GnT-M, respectively. These results can be explained by the known functions of these two HSP: participation of HSP90 in protein folding and HSP70 in protein folding and degradation. We conclude that NMIIA is the master regulator of Golgi fragmentation induced by heat shock or inhibition/depletion of HSP70/90.  相似文献   

19.
20.
HOPs (HSP70–HSP90 organizing proteins) are a highly conserved family of HSP70 and HSP90 co-chaperones whose role in assisting the folding of various hormonal receptors has been extensively studied in mammals. In plants, HOPs are mainly associated with stress response, but their potential involvement in hormonal networks remains completely unexplored. In this article we describe that a member of the HOP family, HOP3, is involved in the jasmonic acid (JA) pathway and is linked to plant defense responses not only to pathogens, but also to a generalist herbivore. The JA pathway regulates responses to Botrytis cinerea infection and to Tetranychus urticae feeding; our data demonstrate that the Arabidopsis (Arabidopsis thaliana) hop3-1 mutant shows an increased susceptibility to both. The hop3-1 mutant exhibits reduced sensitivity to JA derivatives in root growth assays and downregulation of different JA-responsive genes in response to methyl jasmonate, further revealing the relevance of HOP3 in the JA pathway. Interestingly, yeast two-hybrid assays and in planta co-immunoprecipitation assays found that HOP3 interacts with COI1, suggesting that COI1 is a target of HOP3. Consistent with this observation, COI1 activity is reduced in the hop3-1 mutant. All these data strongly suggest that, specifically among HOPs, HOP3 plays a relevant role in the JA pathway by regulating COI1 activity in response to JA and, consequently, participating in defense signaling to biotic stresses.

One-sentence summary: The co-chaperone protein HOP3 (HSP70-HSP90 ORGANIZING PROTEIN 3) regulates the activity of jasmonic acid co-receptor CORONATINE INSENSITIVE 1 and functions in plant defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号