首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gram-negative bacteria, such as Acinetobacter baumannii, are an increasing burden in hospitals worldwide with an alarming spread of multi-drug resistant (MDR) strains. Herein, we compared a type strain (ATCC17978), a non-clinical isolate (DSM30011) and MDR strains of A. baumannii implicated in hospital outbreaks (Ab242, Ab244 and Ab825), revealing distinct patterns of type VI secretion system (T6SS) functionality. The T6SS genomic locus is present and was actively transcribed in all of the above strains. However, only the A. baumannii DSM30011 strain was capable of killing Escherichia coli in a T6SS-dependent manner, unlike the clinical isolates, which failed to display an active T6SS in vitro. In addition, DSM30011 was able to outcompete ATCC17978 as well as Pseudomonas aeruginosa and Klebsiella pneumoniae, bacterial pathogens relevant in mixed nosocomial infections. Finally, we found that the T6SS of DSM30011 is required for host colonization of the model organism Galleria mellonella suggesting that this system could play an important role in A. baumannii virulence in a strain-specific manner.  相似文献   

2.
A two-step multiplex PCR-based method was designed for the rapid detection of 16 species of lactobacilli known to be commonly present in sourdough. The first step of multiplex PCR was developed with a mixture of group-specific primers, while the second step included three multiplex PCR assays with a mixture of species-specific primers. Primers were derived from sequences that specify the 16S rRNA, the 16S-23S rRNA intergenic spacer region, and part of the 23S rRNA gene. The primer pairs designed were shown to exclusively amplify the targeted rrn operon fragment of the corresponding species. Due to the reliability of simultaneously identifying Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum, a previously described multiplex PCR method employing recA gene-derived primers was included in the multiplex PCR system. The combination of a newly developed, quick bacterial DNA extraction method from sourdough and this multiplex PCR assay allows the rapid in situ detection of several sourdough-associated lactobacilli, including the recently described species Lactobacillus rossii, and thus represents a very useful alternative to culture-based methodologies.  相似文献   

3.
The antimicrobial activity of plant extract of Peganum harmala, a medicinal plant has been studied already. However, knowledge about bacterial diversity associated with different parts of host plant antagonistic to different human pathogenic bacteria is limited. In this study, bacteria were isolated from root, leaf and fruit of plant. Among 188 bacterial isolates isolated from different parts of the plant only 24 were found to be active against different pathogenic bacteria i.e. Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecium, Enterococcus faecalis and Pseudomonas aeruginosa. These active bacterial isolates were identified on the basis of 16S rRNA gene analysis. Total population of bacteria isolated from plant was high in root, following leaf and fruit. Antagonistic bacteria were also more abundant in root as compared to leaf and fruit. Two isolates (EA5 and EA18) exhibited antagonistic activity against most of the targeted pathogenic bacteria mentioned above. Some isolates showed strong inhibition for one targeted pathogenic bacterium while weak or no inhibition for others. Most of the antagonistic isolates were active against MRSA, following E. faecium, P. aeruginosa, E. coli and E. faecalis. Taken together, our results show that medicinal plants are good source of antagonistic bacteria having inhibitory effect against clinical bacterial pathogens.  相似文献   

4.
We have developed a reverse line blot (RLB) hybridization assay to detect and identify the commonest mollicutes causing cell line contamination (Mycoplasma arginini, Mycoplasma fermentans, Mycoplasma hyorhinis, Mycoplasma orale, and Acholeplasma laidlawii) and human infection (Mycoplasma pneumoniae, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma parvum, and Ureaplasma urealyticum). We developed a nested PCR assay with “universal” primers targeting the mollicute 16S-23S rRNA intergenic spacer region. Amplified biotin-labeled PCR products were hybridized to membrane-bound species-specific oligonucleotide probes. The assay correctly identified reference strains of 10 mollicute species. Cell cultures submitted for detection of mollicute contamination, clinical specimens, and clinical isolates were initially tested by PCR assay targeting a presumed mollicute-specific sequence of the 16S rRNA gene. Any that were positive were assessed by the RLB assay, with species-specific PCR assay as the reference method. Initially, 100 clinical and 88 of 92 cell culture specimens gave concordant results, including 18 in which two or more mollicute species were detected by both methods. PCR and sequencing of the 16S-23S rRNA intergenic spacer region and subsequent retesting by species-specific PCR assay of the four cell culture specimens for which results were initially discrepant confirmed the original RLB results. Sequencing of amplicons from 12 cell culture specimens that were positive in the 16S rRNA PCR assay but negative by both the RLB and species-specific PCR assays failed to identify any mollicute species. The RLB hybridization assay is sensitive and specific and able to rapidly detect and identify mollicute species from clinical and cell line specimens.  相似文献   

5.
Klebsiella pneumoniae is the second leading causative agent of UTI. In this study, a rapid combined polymerase chain reaction and restriction fragment length polymorphism analysis was developed to identify K. pneumoniae in women, infected with urinary tract infection in the Sylhet city of Bangladesh. Analysis of 11 isolates from women at the age range of 20–55 from three different hospitals were done firstly by amplification with K. pneumoniae specific ITS primers. All of the 11 collected isolates were amplified in PCR and showed the expected 136?bp products. Then, restriction fragment length polymorphism analysis of 11 isolates were conducted after PCR amplification by 16s rRNA universal primers, followed by subsequent digestion and incubation with two restriction enzymes, Pst1 and Alu1. Seven out of 11 isolates were digested by Pst1 restriction enzymes, six isolates digested by Alu1, and while others were negative for both enzymes. Data results reveal that, women at age between 25 and 50 were digested by both enzymes. A woman aged over than 50 was negative while bellow 20 was digested by only Pst1. The results could pave the tactic for further research in the detection of K. pneumoniae from UTI infected women.  相似文献   

6.
Multidrug resistance of Gram-negative bacilli is a major problem globally. However, little is known about the combined probability of resistance to various antibiotics. In this study, minimum inhibitory concentrations of widely used antibiotics were determined using clinical isolates of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, randomly chosen from strain collections created during 1999–2009 in tertiary medical institutions in Seoul, South Korea. To analyze combined efficacy of antibiotics against a subgroup of isolates, conditional probabilities were determined based on arbitrary, non-independent patterns of antimicrobial susceptibility and resistance. Multidrug resistance, defined as resistance to three or more classes of antibiotics, was observed in the following order: A. baumannii (96%), P. aeruginosa (65%), E. coli (52%), and K. pneumoniae (7%). A. baumannii strains resistant to gentamicin were found to be resistant to a number of antibiotics, except for colistin and polymyxin B. Resistance to gentamicin following exposure to this antibiotic was highly likely to lead to multidrug resistance in all four microbes. This study shows a causal relationship between gentamicin resistance and the prevalence of multidrug resistance in clinical isolates of Gramnegative bacilli in South Korea during 1999–2009 and suggests the importance of prudent use of gentamicin in hospitals.  相似文献   

7.
This report describes the first identification of OXA-24 carbapenemase-producing Acinetobacter baumannii isolates from Bulgaria. According to national surveillance data A. baumannii along with Pseudomonas aeruginosa are the most troublesome microorganisms in hospital environment with high rates of acquired carbapenem resistance. In the present study real-time multiplex PCR was performed to identify the most common carbapenemase genes in 15 non-duplicate carbapenem-resistant A. baumannii isolates collected in 2012. The results showed lack of KPC, GES, VIM, IMP-type enzymes. Four A. baumannii isolates tested positive by PCR for the acquired OXA-24 together with the intrinsic OXA-51 carbapenemase. OXA-24 and OXA-23 were determined as co-existent in one isolate. Two isolates were identified with OXA-23 in addition to the OXA-51 carbapenemase.  相似文献   

8.
Acylated homoserine lactones (AHLs) are self-generated diffusible signal molecules that mediate population density dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria, and several virulence genes of human pathogens are known to be controlled by AHLs. In this study, strains of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli and Klebsiella pneumoniae, isolated from intensive care patients, were screened for AHL production by using AHL responsive indicator strains of Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NT1. Positive reactions were recorded for all 50 isolates of P. aeruginosa and 10 isolates of Acinetobacter baumannii with Agrobacterium tumefaciens NT1. Surprisingly, most P. aeruginosa isolates gave negative results with C. violaceum CV026 in contrast to previous reports. This suggests that the new isolates of P. aeruginosa either failed to make short chain AHLs or the level of the signal molecule is very low.  相似文献   

9.
Antibiotic-resistant infections caused by gram-negative bacteria are a major healthcare concern. Repurposing drugs circumvents the time and money limitations associated with developing new antimicrobial agents needed to combat these antibiotic-resistant infections. Here we identified the off-patent antifungal agent, ciclopirox, as a candidate to repurpose for antibiotic use. To test the efficacy of ciclopirox against antibiotic-resistant pathogens, we used a curated collection of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates that are representative of known antibiotic resistance phenotypes. We found that ciclopirox, at 5–15 µg/ml concentrations, inhibited bacterial growth regardless of the antibiotic resistance status. At these same concentrations, ciclopirox reduced growth of Pseudomonas aeruginosa clinical isolates, but some of these pathogens required higher ciclopirox concentrations to completely block growth. To determine how ciclopirox inhibits bacterial growth, we performed an overexpression screen in E. coli. This screen revealed that galE, which encodes UDP-glucose 4-epimerase, rescued bacterial growth at otherwise restrictive ciclopirox concentrations. We found that ciclopirox does not inhibit epimerization of UDP-galactose by purified E. coli GalE; however, ΔgalU, ΔgalE, ΔrfaI, or ΔrfaB mutant strains all have lower ciclopirox minimum inhibitory concentrations than the parent strain. The galU, galE, rfaI, and rfaB genes all encode enzymes that use UDP-galactose or UDP-glucose for galactose metabolism and lipopolysaccharide (LPS) biosynthesis. Indeed, we found that ciclopirox altered LPS composition of an E. coli clinical isolate. Taken together, our data demonstrate that ciclopirox affects galactose metabolism and LPS biosynthesis, two pathways important for bacterial growth and virulence. The lack of any reported fungal resistance to ciclopirox in over twenty years of use in the clinic, its excellent safety profiles, novel target(s), and efficacy, make ciclopirox a promising potential antimicrobial agent to use against multidrug-resistant problematic gram-negative pathogens.  相似文献   

10.
In this study, we introduced species-specific quantitative real-time PCR (qPCR) primers designed based on a DNA-dependent RNA polymerase beta-subunit gene (rpoB) for detecting 42 oral bacterial species. The specificity of the qPCR primers was confirmed by conventional PCR with the genomic DNAs of 73–79 strains regarding 73–75 bacterial species including the type strain for the target species. The standard curves revealed the lower detection limits of 42 bacterial species-specific qPCR primers ranged from 4 to 40 fg below a cycle threshold (C T) value of 35, except Atopobium rimae, Fusobacterium nucleatum, Neisseria meningitidis, and Porphyromonas asaccharolytica which were 400 fg. These results suggest that 42 bacterial species-specific qPCR primers are suitable for applications in epidemiological studies related to oral infectious diseases such as periodontal diseases, endodontic infection, and dental caries.  相似文献   

11.
P. aeruginosa and S. pneumoniae are major bacterial causes of corneal ulcers in industrialized and in developing countries. The current study examined host innate immune responses at the site of infection, and also expression of bacterial virulence factors in clinical isolates from patients in south India. Corneal ulcer material was obtained from 49 patients with confirmed P. aeruginosa and 27 patients with S. pneumoniae, and gene expression of Toll Like Receptors (TLR), cytokines and inflammasome proteins was measured by quantitative PCR. Expression of P. aeruginosa type III secretion exotoxins and S. pneumoniae pneumolysin was detected by western blot analysis. We found that neutrophils comprised >90% cells in corneal ulcers, and that there was elevated expression of TLR2, TLR4, TLR5 and TLR9, the NLRP3 and NLRC4 inflammasomes and the ASC adaptor molecule. IL-1α IL-1β and IFN-γ expression was also elevated; however, there was no significant difference in expression of any of these genes between corneal ulcers from P. aeruginosa and S. pneumoniae infected patients. We also show that 41/49 (84%) of P. aeruginosa clinical isolates expressed ExoS and ExoT, whereas 5/49 (10%) of isolates expressed ExoS, ExoT and ExoU with only 2/49 isolates expressing ExoT and ExoU. In contrast, all 27 S. pneumoniae clinical isolates produced pneumolysin. Taken together, these findings demonstrate that ExoS/T expressing P. aeruginosa and pneumolysin expressing S. pneumoniae predominate in bacterial keratitis. While P. aeruginosa strains expressing both ExoU and ExoS are usually rare, these strains actually outnumbered strains expressing only ExoU in the current study. Further, as neutrophils are the predominant cell type in these corneal ulcers, they are the likely source of cytokines and of the increased TLR and inflammasome expression.  相似文献   

12.
In bacterial biofilms, high molecular weight, secreted exopolysaccharides can serve as a scaffold to which additional carbohydrates, proteins, lipids, and nucleic acids adhere, forming the matrix of the developing biofilm. Here we report methods to extract and purify high molecular weight (>15 kDa) exopolysaccharides from biofilms of eight human pathogens, including species of Staphylcococcus, Klebsiella, Acinetobacter, Pseudomonas, and a toxigenic strain of Escherichia coli O157:H7. Glycosyl composition analysis indicated a high total mannose content across all strains with P. aeruginosa and A. baumannii exopolysaccharides comprised of 80–90% mannose, K. pneumoniae and S. epidermidis strains containing 40–50% mannose, and E. coli with ∼10% mannose. Galactose and glucose were also present in all eight strains, usually as the second and third most abundant carbohydrates. N-acetyl-glucosamine and galacturonic acid were found in 6 of 8 strains, while arabinose, fucose, rhamnose, and xylose were found in 5 of 8 strains. For linkage analysis, 33 distinct residue-linkage combinations were detected with the most abundant being mannose-linked moieties, in line with the composition analysis. The exopolysaccharides of two P. aeruginosa strains analyzed were consistent with the Psl carbohydrate, but not Pel or alginate. The S. epidermidis strain had a composition rich in mannose and glucose, which is consistent with the previously described slime associated antigen (SAA) and the extracellular slime substance (ESS), respectively, but no polysaccharide intracellular adhesion (PIA) was detected. The high molecular weight exopolysaccharides from E. coli, K. pneumoniae, and A. baumannii appear to be novel, based on composition and/or ratio analysis of carbohydrates.  相似文献   

13.
Twenty-five isolates of Staphylococcus aureus, 24 isolates of Escherichia coli, and 25 isolates of Klebsiella pneumoniae obtained from clinical material were tested in vitro for susceptibility to cefamandole, tobramycin and combinations of the two antibiotics utilizing an automated microdilution system. Synergistic or partially synergistic bactericidal effects of the combination were observed against 15 of the S. aureus isolates (60%), 23 of the E. coli isolates (96%), and 19 of the K. pneumoniae isolates (76%) tested. No antagonistic effects of the combination were noted. This study suggests that cefamandole-tobramycin combinations are capable of acting synergistically in vitro against certain gram-positive and gram-negative organisms and may have potential usefulness in clinical situations such as gram-negative rod and staphylococcal sepsis.  相似文献   

14.
Acinetobacter baumannii has been prevalent in nosocomial infections, often causing outbreaks in intensive care units. ISAba1 is an insertion sequence that has been identified only in A. baumannii and its copy number varies among strains. It has been reported that ISAba1 provides a promoter for blaOXA-51-like, blaOXA-23-like, and blaampC, which are associated with the resistance of A. baumannii to carbapenems and cephalosporins. The main purpose of this study was to develop a novel inverse PCR method capable of typing A. baumannii strains. The method involves three major steps: cutting of genomic DNA with a restriction enzyme, ligation, and PCR. In the first step, bacterial genomic DNA was digested with DpnI. In the second step, the digested genomic DNAs were ligated to form intramolecular circular DNAs. In the last step, the ligated circular DNAs were amplified by PCR with primers specific for ISAba1 and the amplified PCR products were electrophoresed. Twenty-two clinical isolates of A. baumannii were used for the evaluation of the inverse PCR (iPCR) typing method. Dendrogram analysis revealed two major clusters, similar to pulsed-field gel electrophoresis (PFGE) results. Three ISAba1-associated genes — blaampC, blaOXA-66-like, and csuD — were amplified and detected in the clinical isolates. This novel iPCR typing method is comparable to PFGE in its ability to discriminate A. baumannii strains, and is a promising molecular epidemiological tool for investigating A. baumannii carrying ISAba1.  相似文献   

15.
The present study, deal about the antibiosis activity of soil bacteria, isolated from 10 different locations of rhizosphere and diverse cultivation at Kochi, Kerala, India. The bacteria were isolated by standard serial dilution plate techniques. Morphological characterization of the isolate was done by Gram’s staining and found that all of them gram positive. Isolated bacteria were tested against 6 human pathogens viz., Escherichia coli, Enterococcus sp., Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Acinetobacter sp. Primary screening was carried out by perpendicular streaking and seed overlay method. Based on the result of primary screening most potential isolates of S1A1 and S7A3 were selected for secondary screening. Both the isolates showed positive results against Enterococcus sp. and S.aureus. The maximum antagonistic activity of 20.98 and 27.08?mm zone of inhibition was recorded at S1A1 against Enterococcus sp. and S. aureus respectively, at 180?µl concentration. Molecular identification was carried out by 16S rRNA sequence. The 16S rRNA was amplified from the DNA samples by using PCR. The amplified 16S rRNA PCR products were purified and sequenced. The sequences were subjected to NCBI BLAST. The isolates S1A1 and S7A3 BLAST results showed 99% and 95% respectively, similarity with the available database sequence of Bacillus amyloliquefaciens. The sequences were deposited in GenBank and the accession numbers KY864390 (S1A1) and KY880975 (S7A3) were obtained.  相似文献   

16.
In this study, we introduced species-specific quantitative real-time PCR (qPCR) primers designed based on a DNA-dependent RNA polymerase beta-subunit gene for detecting anginosus group streptococci (AGS), Streptococcus anginosus, S. constellatus, and S. intermedius. The specificity of the qPCR primers was confirmed by conventional PCR with the genomic DNAs of 76 strains regarding 44 bacterial species including the type strain for the target species. The standard curves revealed the lower detection limits of these species-specific qPCR primers was 40 fg at below a cycle threshold (CT) value of 35. These results suggest that AGS species-specific qPCR primers are suitable for applications in epidemiological studies associated with infectious diseases related to AGS.  相似文献   

17.

Background

Detection of Acinetobacter baumannii has been relying primarily on bacterial culture that often fails to return useful results in time. Although DNA-based assays are more sensitive than bacterial culture in detecting the pathogen, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. In addition, these molecular tools require expensive laboratory instruments. Therefore, establishing molecular tools for field use require simpler molecular platforms. The loop-mediated isothermal amplification method is relatively simple and can be improved for better use in a routine clinical bacteriology laboratory. A simple and portable device capable of performing both the amplification and detection (by fluorescence) of LAMP in the same platform has been developed in recent years. This method is referred to as real-time loop-mediated isothermal amplification. In this study, we attempted to utilize this method for rapid detection of A. baumannii.

Methodology and Significant Findings

Species-specific primers were designed to test the utility of this method. Clinical samples of A. baumannii were used to determine the sensitivity and specificity of this system compared to bacterial culture and a polymerase chain reaction method. All positive samples isolated from sputum were confirmed to be the species of Acinetobacter by 16S rRNA gene sequencing. The RealAmp method was found to be simpler and allowed real-time detection of DNA amplification, and could distinguish A. baumannii from Acinetobacter calcoaceticus and Acinetobacter genomic species 3. DNA was extracted by simple boiling method. Compared to bacterial culture, the sensitivity and specificity of RealAmp in detecting A. baumannii was 98.9% and 75.0%, respectively.

Conclusion

The RealAmp assay only requires a single unit, and the assay positivity can be verified by visual inspection. Therefore, this assay has great potential of field use as a molecular tool for detection of A. baumannii.  相似文献   

18.
A new phenotypic test, called the Carbapenem Inactivation Method (CIM), was developed to detect carbapenemase activity in Gram-negative rods within eight hours. This method showed high concordance with results obtained by PCR to detect genes coding for the carbapenemases KPC, NDM, OXA-48, VIM, IMP and OXA-23. It allows reliable detection of carbapenemase activity encoded by various genes in species of Enterobacteriaceae (e.g., Klebsiella pneumoniae, Escherichia coli and Enterobacter cloacae), but also in non-fermenters Pseudomonas aeruginosa and Acinetobacter baumannii. The CIM was shown to be a cost-effective and highly robust phenotypic screening method that can reliably detect carbapenemase activity.  相似文献   

19.
Bacterial bloodstream infections (BSI) are a major health concern and can cause up to 40% mortality. Pseudomonas aeruginosa BSI is often of nosocomial origin and is associated with a particularly poor prognosis. The mechanism of bacterial persistence in blood is still largely unknown. Here, we analyzed the behavior of a cohort of clinical and laboratory Pseudomonas aeruginosa strains in human blood. In this specific environment, complement was the main defensive mechanism, acting either by direct bacterial lysis or by opsonophagocytosis, which required recognition by immune cells. We found highly variable survival rates for different strains in blood, whatever their origin, serotype, or the nature of their secreted toxins (ExoS, ExoU or ExlA) and despite their detection by immune cells. We identified and characterized a complement-tolerant subpopulation of bacterial cells that we named “evaders”. Evaders shared some features with bacterial persisters, which tolerate antibiotic treatment. Notably, in bi-phasic killing curves, the evaders represented 0.1–0.001% of the initial bacterial load and displayed transient tolerance. However, the evaders are not dormant and require active metabolism to persist in blood. We detected the evaders for five other major human pathogens: Acinetobacter baumannii, Burkholderia multivorans, enteroaggregative Escherichia coli, Klebsiella pneumoniae, and Yersinia enterocolitica. Thus, the evaders could allow the pathogen to persist within the bloodstream, and may be the cause of fatal bacteremia or dissemination, in particular in the absence of effective antibiotic treatments.  相似文献   

20.
A duplex real-time PCR assay was designed for simultaneous detection and genotyping of Mycoplasma pneumoniae (M. pneumoniae). The detection/typing performance of this duplex PCR method, targeting specific genes for M. pneumoniae type 1 (mpn 459) and type 2 (mpna 5864), was compared to that of the previously published MpP1 real-time PCR assay and the genotyping method for the adhesin P1 gene (mpn 141). A total of 1,344 throat swab specimens collected from patients in Beijing, China were tested for M. pneumoniae by bacterial culture, MpP1 real-time PCR assay, and our duplex PCR assay, and positive detection rates of 26.9%, 34.4%, and 33.7%, respectively, were obtained. The duplex PCR method demonstrated high sensitivity and accuracy for detecting and genotyping M. pneumoniae, and significant differences in genotyping ability were observed when compared to the conventional P1 gene-based method. M. pneumoniae type 1 was the predominate genotype from 2008 to 2012 in Beijing, and a shift from type 1 to type 2 began to occur in 2013. To our knowledge, this is the first reported incidence of a type shift phenomenon of M. pneumoniae clinical isolates in China. These genotyping results provide important information for understanding recent changes in epidemiological characteristics of M. pneumoniae in Beijing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号