首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为探讨中国鲤形目鱼类中轴骨骼数及其与系统发育和生态习性的相关性,采用X光透视照相法对157种鲤科(Cyprinidae)、鳅科(Cobitidae)、平鳍鳅科(Balitoridae)鱼类的脊椎骨数、肋骨数、尾椎数进行了比较分析。结果显示,中国鲤形目鱼类的脊椎骨数在30-52枚之间,均值39.45?4.44;肋骨数在8-28对之间,均值15.27?3.08;尾椎数在14-34枚之间,均值21.08?2.89。依据脊椎骨数、肋骨数、尾椎数对鲤科各亚科进行聚类,显示鲤科12个亚科分为2大类:雅罗鱼类,包括雅罗鱼亚科、鲌亚科、鲴亚科、裂腹鱼亚科等4亚科;鲃类,包括鲢亚科、鮈亚科、鱼丹亚科、鲃亚科、野鲮亚科、鳅鮀亚科、鲤亚科、鱊亚科等8亚科。单因素方差分析显示,鲤科肉食性鱼类的肋骨数与脊椎骨数的比值显著少于植食性鱼类(P<0.05),而脊椎骨数、尾椎数则显著多于植食性鱼类(P<0.05)。中上层鱼类的脊椎骨数、尾椎数显著多于下层鱼类(P<0.05)。极小型鱼类的脊椎骨数、肋骨数,以及肋骨数与脊椎骨数之比显著少于大型鱼类(P<0.05)。表明鲤科鱼类的中轴骨骼数与其系统发育和生态习性及体型具有明显的相关性。  相似文献   

2.
中国鲤形目鱼类的脊椎骨数及其生态适应性   总被引:6,自引:0,他引:6       下载免费PDF全文
为探讨中国鲤形目鱼类脊椎骨数及其与系统发育和生态习性的相关性,采用X光透视照相法对鲤科(Cyprinidae)、鳅科(Cobitidae)、爬鳅科(Balitoridae)鱼类共157种的脊椎骨数、肋骨数和尾椎数进行了比较分析。结果显示,中国鲤形目鱼类的脊椎骨数30~52枚,均值39.5±4.4;肋骨数8~28对,均值15.3±3.1;尾椎数14~34枚,均值21.1±2.9。依据脊椎骨数、肋骨数、尾椎数对鲤科各亚科进行聚类,显示鲤科12个亚科可归为2大类:Ⅰ类包括雅罗鱼亚科、鲌亚科、鲴亚科、裂腹鱼亚科4亚科;Ⅱ类包括鲢亚科、亚科、亚科、鲃亚科、野鲮亚科、鳅亚科、鲤亚科、亚科8亚科。对鲤科89种所作的单因素方差分析显示,肉食性鱼类的肋骨数与脊椎骨数的比值显著小于植食性鱼类(P0.05),而脊椎骨数、尾椎数则显著多于植食性鱼类(P0.05)。中上层鱼类的脊椎骨数、尾椎数显著多于下层鱼类(P0.05)。极小型鱼类的脊椎骨数、肋骨数以及肋骨数与脊椎骨数之比显著少于或小于大型鱼类(P0.05)。表明鲤科鱼类的脊椎骨数与其生态习性及体型具有明显的相关性。  相似文献   

3.
对沙鳅亚科鱼类3属14个代表种的线粒体DNA控制区序列的结构进行了分析。通过与鲤形目鱼类的控制区序列进行比较,将沙鳅亚科鱼类的控制区分为终止序列区、中央保守区和保守序列区三个区域。同时识别了沙鳅亚科中一系列保守序列,并给出了它们的一般形式。以胭脂鱼为外类群,对比条鳅亚科、花鳅亚科、以及平鳍鳅科的代表性种类,采用NJ、MP和ML法构建沙鳅亚科的分子系统树。分子系统发育分析表明,沙鳅亚科为一单系,包括3个属:沙鳅属、副沙鳅属和薄鳅属,各属均构成单系。根据分子系统学、形态学的结果及地理分布推断,沙鳅亚科中沙鳅属可能为最为原始的属,副沙鳅属其次,而薄鳅属最特化。    相似文献   

4.
从细胞色素b基因序列变异分析中国鲇形目鱼类的系统发育   总被引:18,自引:0,他引:18  
采用PCR技术获得中国鲇形目鱼类11科24属27个代表种类细胞色素b基因1138bp全序列,比较分析了来自北美洲、非洲的部分鲇形目鱼类同一基因序列,并选取脂鲤目、鲤形目和鲱形目鱼类作外类群,采用Bayesian方法和最大简约法(MP)构建分子系统树。结果表明:(1)鲇形目鱼类细胞色素b基因序列中,与脂鲤目、鲤形目以及鲱形目鱼类相比存在3bp的缺失;(2)鲇形目鱼类各科代表种类形成一单系群;(3)两种建树方法均支持铫科、粒鲇科和钝头鮠科形成一单系群;而胡子鲇科、刀鲇科、海鲇科、鮰科、长臀鮠科、鲢科、鲇科、棘脂鲿科、鲿科形成一大的单系群;但鳗鲇科的系统位置两种建树方法没有取得一致结果;而其中长臀鲍科与北美的鮰科形成姐妹群,胡子鲇、鮰科、鲇科、鲿科和鮡科是较明显的单系群。  相似文献   

5.
独特、复杂的地形地貌使西藏形成了别具一格的动植物区系。西藏的鱼类也以其独具的特征世世代代在这奇特而又年青的高原生栖繁衍。1西藏鱼类区系组成及其特点对西藏地区鱼类实地调查,现知西藏地区有鱼类58个种和13个亚种,分隶于3目5科和4亚科,22个属,约占我国整个青藏高原鱼类92个种和20个亚种的63%以上。西藏地区鱼类区系基本由3大类群组成:鲤形目(Cypriniformes)鲤科(Cyprinidae)的裂腹鱼亚科(Schizothoracinae)、鳅科(Coitidae)的条鳅亚科(Nemacheilinae)和鲶形目(Siluri-formes)的科(Sisoridae),其中裂腹鱼亚…  相似文献   

6.
鲤科是鱼类最大的科, 在中国淡水鱼类组成中鲤科鱼类的成分占一半以上. 鲤科鱼类的演化过程代表了东亚淡水鱼类的整体演化过程. 为探讨东亚鲤科鱼类系统发育关系, 共分析了包括18种新测序列在内的54种鲤科鱼类细胞色素b基因的全序列. 分析的物种涵盖了鲤科鱼类的12个亚科并对问题较多的亚科(Danioninae)和雅罗鱼亚科(Leuciscinae)进行了广泛的采样. 系统发育树的建立使用了多种方法, 包括邻接法、最大简约法和最大似然法. 亚口鱼科(Catostomidae)的胭脂鱼(Myxocyprinus asiaticus)被指定为外类群, 3种方法所得结果非常相似, 并支持一些亚科的单系性, 如鲌亚科(Cultrinae)、鯝亚科(Xenocyprinae)、鮈亚科(Gobioninae)(包括鳅鮀亚科Gobiobotinae). 从分子水平上证明亚科不是一个单系类群, 雅罗鱼亚科被分为两个互不相关的类群; 东亚雅罗鱼群与鲌亚科和鯝亚科形成一单系类群; 而欧洲、西伯利亚、北美的雅罗鱼形成另一个单系群. Howes所定义的鲤亚科在NJ树和ML树中得到有力的支持并位于系统树的基部. 高体鳑鲏(Rhodeus sericeus)代表的鳑鲏亚科的系统位置没有得到解决. 显示鲤科鱼类可分为3个大的类群并与其3个进化阶段相对应: 老第三纪类群包含亚科的东南亚种类和Howes的鲤亚科; 北方冷水性类群包含北方雅罗鱼、鮈亚科和鳑鲏; 东亚类群包含鲌亚科、鯝亚科、雅罗鱼东亚种类和亚科东亚种类. 老第三纪类群代表鲤科鱼类的原始阶段, 北方冷水性类群对应于鲤科鱼类对全球变冷的反应, 而东亚类群则显示青藏高原急剧隆升后, 在东亚季风气候条件下鲤科鱼类的大量分化.  相似文献   

7.
广东北江流域部分野生淡水鱼类种质资源调查   总被引:1,自引:0,他引:1  
为了解广东省北江流域野生淡水鱼类种质资源和遗传多样性,于2007—2008年开展了广东省北江流域部分野生淡水鱼类的调查,运用线粒体DNA D-loop测序方法开展遗传多样性分析,测定采集鱼类的mtDNA D-loop基因序列并提交GenBank数据库,运用相关软件分析序列并建立聚类树。采集的野生淡水鱼类32种,隶属于3目10科27属,其中鲤形目鱼类21种,占65.6%,鲈形目鱼类4种,占12.5%,鲇形目鱼类7种,占21.9%。在鲤形目鱼类中,鳅科、平鳍鳅科、爬鳅科共12种,占鲤形目鱼类的57.1%。调查结果表明,北江流域存在丰富的野生淡水鱼类物种多样性,须采取有效措施保护北江流域淡水鱼类资源。测定的线粒体DNA D-loop序列均提交GenBank数据库获得序列号:EU380208-EU380236,EU697088-EU697148。测序结果和聚类树分析表明,线粒体DNA D-loop可作为鱼类种类鉴定的分子标记,分析结果印证了传统形态分类学的知识,提供了分子生物学证据。  相似文献   

8.
选择线粒体COⅠ基因作为分子标记,进行沙鳅亚科鱼类(Botiinae)DNA条形码及其分子系统发育研究。研究获得了沙鳅亚科7属19种共131个个体的COⅠ基因序列,利用MEGA5.0软件分析了沙鳅亚科鱼类COⅠ基因的序列特征,计算了种内及种间遗传距离。沙鳅亚科鱼类的分子系统发育关系的重建分别采用NJ法和Bayesian法。研究发现,沙鳅亚科COⅠ基因的碱基组成为: A 24.4%、T 29.5%、G 18.0%、C 28.1%。沙鳅亚科鱼类种内平均遗传距离为0.0020.000,种间平均遗传距离为0.1480.008。DNA条形码研究结果显示,所分析的19种沙鳅鱼类各自分别聚成单系分支,表明COⅠ基因在本研究中具有100%的物种鉴别率。同时,系统发育分析支持各属的单系性,并且结果显示沙鳅亚科鱼类聚为两个分支,其中一支由薄鳅属和副沙鳅属构成,另一分支则包括: (沙鳅属、色鳅属)和 中华沙鳅属、(缨须鳅属、安彦鳅属)。因此,COⅠ基因可以作为有效的分子标记对沙鳅亚科进行DNA条形码研究以及分子系统发育研究。    相似文献   

9.
河西阿拉善内流区的鱼类区系和地理区划   总被引:6,自引:0,他引:6  
赵铁桥 《动物学报》1991,37(2):153-167
中国西北河西阿拉善内流区,主要含石羊河、弱水、疏勒河三个分离的内陆水系,为一独立的水文单元,面积逾50万平方公里,天然分布了鲤科2属2种、鳅科条鳅亚科2属10种。组成鱼类区系的这12个土著种中,有7种/亚种为本区特有。10种无鳞条鳅和河西花斑裸鲤表征了本区和中亚山地及青藏高原的共同鱼类区系特征:区系组成简单,裂腹鱼类和无鳞条鳅类占优势,很少凶猛种类,适应高寒水体严酷环境的种类特化,和局限分布的类群分化。鲫的存在体现了本区处在青藏高原和中亚内陆干旱区边缘的特点。这些鱼类在本区也表现出水平和垂直分布的差异。 平均动物区系类似性(AFR)判别和数值聚类分析,从表相学全面相似性上阐明,本区三水系形成以弱水为中心的独立鱼类地理学单位,与柴达木盆地的区系关系最密切。特有性俭吝分析(PAE)和俭吝性种系发生分析(PAUP)产生了基本一致的区域支序图,从分替论的鱼类地理亲缘上揭示了:疏勒河与弱水,它们与石羊河,河西与柴达木(和河曲区即黄河上游),它们与青海湖是一系列姐妹群关系,一起组成一个大的区域单系群;而陇中与河套,它们与内蒙古高原,又依次为姐妹群关系,一起组成另一大的单系群;两大单系群作为姐妹群,形成更高一级区域单系群。 进而结合有关的鱼类种系发生和区域地质历史资料,叙述了河西  相似文献   

10.
为厘清鲟形目鱼类的系统发育, 研究新测定了中华鲟(Acipenser sinensis)、长江鲟(A. dabryanus)、短吻鲟(A. brevirostrum)、纳氏鲟(A. naccarii)、鳇(Huso dauricus)和匙吻鲟(Polyodon spathula)共6种鲟类的线粒体全基因组序列。联合已测的17种鲟类的线粒体基因组数据, 利用最大似然法和贝叶斯法重建了鲟形目鱼类的分子系统发育关系, 并采用似然值检验对不同的树拓扑结构进行了评价。结果表明, 6种新测鲟类的线粒体基因组大小为16521—16766 bp, 编码13个蛋白质编码基因、22个转运RNA基因和2个核糖体基因, 与大多数已测的鲟类的线粒体基因组结构高度相似。基于23种鲟形目鱼类线粒体基因组数据, 系统发育分析的结果表明: (1)鲟形目的两个科, 匙吻鲟科(Polyodontidae)和鲟科(Acipenseridae)均为单系; (2)鲟科的内部亲缘关系复杂, 鲟属和鳇属的物种均不构成单系群。鲟科鱼类按分子系统发育重建结果可以分为3个类群: 尖吻鲟类(A. sturio - A. oxyrinchus clade)、大西洋鲟类(Atlantic clade)和太平洋鲟类(Pacific clade)。树拓扑结构的检验结果表明, 鲟科的系统发育关系为(尖吻鲟类(太平洋鲟类, 大西洋鲟类))。铲鲟属(Scaphirhynchus)是大西洋鲟类的基部类群。研究也说明线粒体基因组数据在鲟形目鱼类系统与进化研究方面具有重要应用价值。  相似文献   

11.
Abstract Ostariophysi is the second largest superorder within Teleostei. It contains five orders: Gonorynchiformes, Cypriniformes, Characiformes, Siluriformes, and Gymnotiformes. Resolving the higher-level relationships among ostariophysan and related fishes will aid in resolving basal teleostean divergence and provide basis to historical biogeographic analysis of major freshwater fish groups. In this study, we report the complete mitochondrial (mt) DNA sequences for eleven ostariophysan fishes and the results of phylogenetic analyses including these species plus four other ostariophysan and nine non-ostariophysan teleostean fishes. Maximum likelihood and maximum parsimony analyses reconfirmed clupeiforms as the closest relatives of ostariophysans. However, gonorynchiforms were closer to clupeiforms than to otophysans (ostariophysan groups excluding gonorynchiforms), thus raising a question over the current definition of Ostariophysi. The lack of clarity in otocephalan (ostariophysans + clupeiforms) basal relationships implies that such divergence took place over a short period of time. The monophyly of cypriniforms, characiphysans (characiforms, siluriforms, and gymnotiforms), and orders or superorders outside the ostariophysans examined here were conceivably reconstructed. The phylogenetic hypothesis suggests a Pangean origin of otophysans. Within characiphysans, gymnotiforms and siluriforms have independent evolutionary origins and evolutionary histories comparable to or older than that of characiforms. This helps to explain the present geographic distribution of characiphysans.  相似文献   

12.
The insulin receptor (IR) gene plays an important role in regulating cell growth, differentiation and development. In the present study, DNA sequences of insulin receptor genes, IRa and IRb, were amplified and sequenced from 37 representative species of the Cyprinidae and from five outgroup species from non-cyprinid Cypriniformes. Based on coding sequences (CDS) of tyrosine kinase regions of IRa and IRb, molecular evolution and phylogenetic relationships were analyzed to better understand the characteristics of IR gene divergence in the family Cyprinidae. IRa and IRb were clustered into one lineage in the gene tree of the IR gene family, reconstructed using the unweighted pair group method with arithmetic mean (UPGMA). IRa and IRb have evolved into distinct genes after IR gene duplication in Cyprinidae. For each gene, molecular evolution analyses showed that there was no significant difference among different groups in the reconstructed maximum parsimony (MP) tree of Cyprinidae; IRa and IRb have been subjected to similar evolutionary pressure among different lineages. Although the amino acid sequences of IRa and IRb tyrosine kinase regions were highly conserved, our analyses showed that there were clear sequence variations between the tyrosine kinase regions of IRa and IRb proteins. This indicates that IRa and IRb proteins might play different roles in the insulin signaling pathway.  相似文献   

13.
The phylogenetic relationships of species are fundamental to any biological investigation, including all evolutionary studies. Accurate inferences of sister group relationships provide the researcher with an historical framework within which the attributes or geographic origin of species (or supraspecific groups) evolved. Taken out of this phylogenetic context, interpretations of evolutionary processes or origins, geographic distributions, or speciation rates and mechanisms, are subject to nothing less than a biological experiment without controls. Cypriniformes is the most diverse clade of freshwater fishes with estimates of diversity of nearly 3,500 species. These fishes display an amazing array of morphological, ecological, behavioral, and geographic diversity and offer a tremendous opportunity to enhance our understanding of the biotic and abiotic factors associated with diversification and adaptation to environments. Given the nearly global distribution of these fishes, they serve as an important model group for a plethora of biological investigations, including indicator species for future climatic changes. The occurrence of the zebrafish, Danio rerio, in this order makes this clade a critical component in understanding and predicting the relationship between mutagenesis and phenotypic expressions in vertebrates, including humans. With the tremendous diversity in Cypriniformes, our understanding of their phylogenetic relationships has not proceeded at an acceptable rate, despite a plethora of morphological and more recent molecular studies. Most studies are pre-Hennigian in origin or include relatively small numbers of taxa. Given that analyses of small numbers of taxa for molecular characters can be compromised by peculiarities of long-branch attraction and nodal-density effect, it is critical that significant progress in our understanding of the relationships of these important fishes occurs with increasing sampling of species to mitigate these potential problems. The recent Cypriniformes Tree of Life initiative is an effort to achieve this goal with morphological and molecular (mitochondrial and nuclear) data. In this early synthesis of our understanding of the phylogenetic relationships of these fishes, all types of data have contributed historically to improving our understanding, but not all analyses are complementary in taxon sampling, thus precluding direct understanding of the impact of taxon sampling on achieving accurate phylogenetic inferences. However, recent molecular studies do provide some insight and in some instances taxon sampling can be implicated as a variable that can influence sister group relationships. Other instances may also exist but without inclusion of more taxa for both mitochondrial and nuclear genes, one cannot distinguish between inferences being dictated by taxon sampling or the origins of the molecular data.  相似文献   

14.
We analysed mitochondrial genomic sequences under maximum likelihood (ML) criteria to explore phylogenetic relationships, and performed historical biogeography analysis with divergence time estimation for fishes of Order Cypriniformes (Actinopterygii: Ostariophysi). We added mitogenomes for eight new cypriniforms and one outgroup to a data set comprising 53 and six outgroup mitogenomes from a previous study to make our taxon sampling geographically representative. The ML tree reconfirmed monophyly of four basal cypriniform clades (cyprinids, catostomids, gyrinocheilids, and loaches including balitorids and cobitids). It also recovered 18 monophyletic groups largely equivalent to the subfamilial rank, and resolved interrelationships among most of these subfamilial clades. However, lower bootstrap support for the ML tree and higher approximately unbiased (au) probabilities for alternative topologies around some branches indicated problems that still need to be resolved. Historical taxon biogeography by dispersal‐vicariance analysis, a parsimonious reconstruction of past ranges, and gain‐loss ratio analysis at the subfamilial level, identified the geographical region of basal cypriniform divergence as southern Asia. Bayesian divergence time analysis dated the basal otophysan split, which gave birth to Order Cypriniformes, to the late Triassic around 219.5 Mya. The basal cypriniform divergence took place during the late Jurassic around 155.9 Mya. These dates coincide with the onset and completion, respectively, of the Pangaean breakup. Taking biogeographical analysis and node dating into account, we consider the most likely candidate for the initial geographical range of Order Cypriniformes to be the south‐eastern area of Mesozoic Laurasia (present‐day southern Asia, excluding the Indian subcontinent). We also briefly discuss ecological implications of the group's divergence. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 633–662.  相似文献   

15.
Interrelationships of the ostariophysan fishes (Teleostei)   总被引:2,自引:0,他引:2  
The history of ostariophysan classification is summarized and it is noted that traditional concepts of relationships have never been supported by characters found to be unique to the taxa. We present a new hypothesis of relationships among four of the five major ostariophysan lineages: Cypriniformes, Characiformes, Siluroidei, and Gymnotoidei (Otophysi). Cypriniforms are the sister-group of the remaining three (Characiphysi), and characiforms are the sister-group of siluroids plus gymnotoids (Siluriformes). Placement of the Gonorynchiformes as the sister-group of the Otophysi is supported by additional evidence. Each of the five lineages is monophyletic. Analysis was concentrated upon species thought to be the least specialized within each lineage; choices of these species are discussed. Chanos is determined to be a relatively primitive gonorynchiform morphologically and the sister-group of all other Recent members of the order. Opsariichthys and Zacco are found to be morphologically primitive cypriniforms. We propose that a monophyletic group comprising the Citharinidae and Distichodontidae forms the sister-group of all other characiforms. Within the two families, Xenocharax is the least specialized. We suggest that Hepsetus, the erythrinids, and the ctenoluciids are more derived than the distichodontids and citharinids, and may form a monophyletic group within die characiforms. The traditional hypothesis that Diplomystes is the primitive sister-group of all Recent siluroids is substantiated. Our evidence suggests that Sternopygus is the most primitive gymnotoid morphologically; but rather than being the sister-group of all other gymnotoids, it is the primitive sister-group within a lineage called the Sternopygidae by Mago-Leccia. Previous explanations of otophysan distribution have been based on notions of relationships which are unsupported by the evidence presented herein. Our own analysis of relationships serves primarily to make clear the extent of sympatry, and therefore the probability of dispersal, among the major ostariophysan lineages. The extent of sympatry, together with the widespread distribution of ostariophysans, suggests that the group is older than previously supposed, and our hypotheses of relationships among the characiforms implies that many of the extent characiform lineages evolved before the separation of Africa and South America. Further understanding of ostariophysan distribution must await phylogenetic analysis within each of the five major lineages so that distributions linked with vicariance patterns and dispersal events can be sorted out.  相似文献   

16.
17.
The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages.  相似文献   

18.
We present the first estimate of the phylogenetic relationships among all 916 extant and nine recently extinct species of bats Mammalia: Chiroptera), a group that accounts for almost one-quarter of extant mammalian diversity. This phylogeny was derived by combining 105 estimates of bat phylogenetic relationships published since 1970 using the supertree construction technique of Matrix Representation with Parsimony (MRP). Despite the explosive growth in the number of phylogenetic studies of bats since 1990, phylogenetic relationships in the order have been studied non-randomly. For example, over one-third of all bat systematic studies to date have locused on relationships within Phyllostomidae, whereas relationships within clades such as Kerivoulinae and Murinae have never been studied using cladistic methods. Resolution in the supertree similarly differs among clades: overall resolution is poor (46.4%, of a fully bifurcating solution) but reaches 100% in some groups (e.g. relationships within Mormoopidae). The supertree analysis does not support a recent proposal that Microchiroptera is paraphyletic with respect to Megachiroptera, as the majority of source topologies support microbat monophyly. Although it is not a substitute for comprehensive phylogenetic analyses of primary molecular and morphological data, the bat supertree provides a useful tool for future phylogenetic comparative and macroevolutionary studies. Additionally, it identifies clades that have been little studied, highlights groups within which relationships are controversial, and like all phylogenetic studies, provides preliminary hypotheses that can form starting points for future phylogenetic studies of bats.  相似文献   

19.
The complete nucleotide sequence of the mitochondrial genome from the R. uyekii with a total size of 16,817 bp has been determined by long PCR technology. Mitogenome of R. uyekii encoding 13 putative proteins, two ribosomal RNAs and 22 tRNAs shows typical teleost mitogenome structure. Nucleotide composition, amino acid composition and codon usage are in the range of values estimated from other teleost mitogenomes. In the AT rich region of R. uyekii, several conserved blocks which are identified from vertebrates are observed in the genome. R. uyekii, the Korean endemic species, belongs to cyprinid fish from which the information of nine mitogenomes is available. To understand the phylogenetic relationships of Cypriniformes from the known mitogenome information, we analysed Cypriniformes mitogenome based on protein coding gene sequences. In spite of more resolved picture of phylogenetic interrelationships in cyprinid fish in this study, the further study with comprehensive taxon sampling for mitogenome information is strongly needed.  相似文献   

20.
We have examined phylogenetic relationships of suckers of tribe Moxostomatini (Cypriniformes, Catostomidae) using cytochrome-b and Growth Hormone gene intron sequences. Phylogenies were significantly different from recent estimates of relationships based primarily on morphology (Smith, 1992) and cytochrome-b sequences (Harris et al., 2002). Overall, there was little support for many basal nodes in the phylogeny, however it was clear that Scartomyzon and Moxostoma were not monophyletic, despite morphological evidence provided Robins and Raney (1956, 1957), Jenkins (1970), and Smith (1992). Growth Hormone sequences provided good support for a monophyletic Western Scartomyzon lineage and thus suggested a single ancestral invasion of Scartomyzon-like fishes into drainages of Texas and Mexico. Phylogenetic relationships of Western Scartomyzon are structured geographically and do not conform well to current taxonomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号