首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein kinase C epsilon is an oncogenic, actin nucleating protein that coordinately regulates changes in cell growth and shape. Cells constitutively expressing PKCepsilon spontaneously acquire a polarized morphology and extend long cellular membrane protrusions. Here we report that the regulatory C1 domain of PKCepsilon contains an actin binding site that is essential for the formation of elongate invadopodial-like structures, increased pericellular metalloproteinase activity, in vitro invasion of a Matrigel barrier, and the invasion and metastasis of tumors grown in vivo by PKCepsilon-transformed NIH3T3 fibroblasts in nude mice. While removing this small actin binding motif caused a dramatic reversion of tumor invasion, the deletion mutant of PKCepsilon remained oncogenic and tumorigenic in this experimental system. We propose that PKCepsilon directly interacts with actin to stimulate polymerization and the extension of membrane protrusions that transformed NIH3T3 cells use in vivo to penetrate and degrade surrounding tissue boundaries.  相似文献   

2.
Cellular events like cell adhesion and migration involve complex rearrangements of the actin cytoskeleton. We have previously shown that the multidomain adaptor protein c-Cbl facilitates actin cytoskeletal reorganizations that result in the adhesion of v-Abl-transformed NIH 3T3 fibroblasts. In this report, we demonstrate that c-Cbl also enhances migration of v-Abl-transformed NIH 3T3 fibroblasts. This effect of c-Cbl depends on its tyrosine phosphorylation, specifically on phosphorylation of its Tyr-731, which is required for binding of PI-3' kinase to c-Cbl. Furthermore, we demonstrate that the effect of c-Cbl on migration of v-Abl-transformed fibroblasts is mediated by active PI-3' kinase and the small GTPase Rac1. Our results also indicate that ubiquitin ligase activity of c-Cbl is required, while spatial localization of c-Cbl to the pseudopodia is not required for the observed effects of c-Cbl on cell migration.  相似文献   

3.
S100A6 (calcyclin) is a calcium binding protein with two EF‐hand structures expressed mostly in fibroblasts and epithelial cells. We have established a NIH 3T3 fibroblast cell line stably transfected with siRNA against S100A6 to examine the effect of S100A6 deficiency on non‐transformed cell physiology. We found that NIH 3T3 fibroblasts with decreased level of S100A6 manifested altered cell morphology and proliferated at a much slower pace than the control cells. Cell cycle analysis showed that a large population of these cells lost the ability to respond to serum and persisted in the G0/G1 phase. Furthermore, fibroblasts with diminished S100A6 level exhibited morphological changes and biochemical features of cellular senescence as revealed by β‐galactosidase and gelatinase assays. Also, S100A6 deficiency induced changes in the actin cytoskeleton and had a profound impact on cell adhesion and migration. Thus, we have shown that the S100A6 protein is involved in multiple aspects of fibroblast physiology and that its presence ensures normal fibroblast proliferation and function. J. Cell. Biochem. 109: 576–584, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
To study the dynamics of actin cytoskeleton rearrangement in living cells, an eukaryotic expression vector expressing a beta-actin-GFP fusion protein was generated. The expression construct when transfected into NIH3T3 fibroblast, A2058 human melanoma and 293T human embryonic kidney carcinoma cell lines expressed beta-actin-GFP fusion protein, which colocalized with endogenous cellular actin as determined by histoimmunofluorescence staining. The beta-actin-GFP was also observed to be reorganized in response to treatments with the chemoattractant type IV collagen. Cells extended pseudopodial protrusions and altered the morphology of their cortical structure in response to type IV collagen stimulation. More importantly, beta-actin-GFP accumulated in areas undergoing these dynamic cytoskeleton changes, indicating that beta-actin-GFP could participate in actin polymerization. Although ectopic expression of beta-actin-GFP lead to minor side effects on cell proliferation, these studies suggest that this strategy provides an alternative to the invasive techniques currently used to study actin dynamics and permits real-time visualization of actin rearrangements in response to environmental cues.  相似文献   

5.
Certain types of cells show a dramatic change in cell morphology cultured in the presence of transforming growth factor beta (TGF-beta). To identify cellular components or factors leading to morphological changes, we investigated if any members of cytoskeletal proteins and cell-adhesion molecules were redistributed in TGF-beta-treated Swiss 3T3 fibroblasts by indirect immunofluorescence and Western-blot analysis. Changes in cell morphology became apparent within 12 h of the addition of TGF-beta and new RNA and protein synthesis was necessitated by the changes. While TGF-beta induced reorganization of microfilaments as reported in earlier studies, one of the actin isoforms, alpha actin of smooth muscle, was induced to form stress fibers in Swiss 3T3 cells. It was observed that myosin light chain was relocated from cell periphery to cytoplasmic filamentous structures by TGF-beta treatment, with an increased amount. In addition, the cell-shape change was accompanied by an increase in the level of vinculin and tyrosine phosphorylation at focal adhesions. These results suggest that new protein synthesis is required for the cell-shape change, and acto-myosin filaments and focal adhesion proteins are involved in the alteration of cell morphology induced by TGF-beta in Swiss 3T3 fibroblasts.  相似文献   

6.
7.
Activated Raf kinases and Rac GTPases were shown to cooperate in the oncogenic transformation of fibroblasts, which is characterised by the disassembly of the cellular actin cytoskeleton, a nearly complete loss of focal adhesion complexes and deregulated cell proliferation. This is surprising since the Rac GTPase induces actin structures and the adhesion of suspended cells to extracellular matrix proteins. NIH 3T3 cells expressing a hydroxytamoxifen-inducible oncogenic c-Raf-1-oestrogen receptor fusion protein (c-Raf-1-BxB-ER, N-BxB-ER cells) undergo morphological transformation upon stimulation of the Raf kinase. We show that treatment with the Rac, Rho and Cdc42 activating Escherichia coli toxin CNF1 or coexpression of an activated RacV12 mutant partially inhibits and reverses the disassembly of cellular actin structures and focal adhesion complexes by oncogenic Raf. Activation of the Rac GTPase restores actin structures and focal adhesion complexes at the cellular boundary, leading to spreading of the otherwise spindle-shaped Raf-transformed cells. Actin stress fibres, however, which are regulated by the function of the Rho GTPase, are disassembled by oncogenic Raf even in the presence of activated Rac and Rho. With respect to the RacV12-mediated spreading of Raf-transformed cells, we postulate an anti-oncogenic function of the activated Rac. Another feature of cell transformation is the deregulation of cell cycle control. NIH 3T3 cells expressing high levels of the c-Raf-1-BxB-ER protein undergo a cell cycle arrest upon stimulation of the oncogenic Raf kinase. Our results show that in N-BxB-ER-RacV12 cells the expression of the activated RacV12 mediates cell proliferation in the presence of high-intensity Raf signals and high levels of the Cdk inhibitor p21(Cip1). These results indicate a pro-oncogenic function of the Rac GTPase with respect to the deregulation of cell cycle control.  相似文献   

8.
Total proteins from a mouse embryo fibroblast cell line NIH/3T3, NIH/3T3 cells transformed by human activated c-Ha-ras (EJ-ras) oncogene (EJ-NIH/3T3), and the two flat revertant cell lines, R1 and R2, were analyzed by two-dimensional gel electrophoresis (IEF and NEPHGE). Several hundred polypeptides were resolved as seen by silver staining. Common alterations in four polypeptide spots were observed in the revertants when compared with NIH/3T3 and EJ-NIH/3T3 cells. In these alterations, a new polypeptide spot p92-5.7 (designated by molecular weight x 10(-3) and pI) was detected only in the revertants and not in NIH/3T3 and EJ-NIH/3T3 cells. Furthermore, the expression level of p92-5.7 seemed to be associated with the flat morphology and the reduced tumorigenicity of the revertants. Polypeptide p92-5.7 was also not detected in the total proteins extracted from BALB/3T3 cells, NIH Swiss mouse primary embryo fibroblasts, NRK (normal rat kidney) cells, and L6 (rat myoblast). Subcellular fractionation of total protein from R1 cells revealed that the p92-5.7 was present in the cytosol. Western blot analysis using an anti-gelsolin antibody demonstrated that the p92-5.7 might be a variant form of gelsolin which is thought to be an actin regulatory protein or a gelsolin-like polypeptide. These results may suggest that the expression of p92-5.7 detected only in the revertants is associated, at least in part, with the reversion. This may be the first demonstration of specific protein expression in the flat revertants.  相似文献   

9.
Microinjection of Onconase or RNase A into NIH/3T3 cells was used to study the intracellular actions of these two proteins. Onconase preferentially killed actively growing cells in both microinjection and cell culture experiments. Moreover, agents that increased the number of cells in S phase such as serum or microinjected signal transduction mediators (Ras, protein kinase C, and mitogen-activated protein kinase) enhanced Onconase cytotoxicity. Conversely, agents that decreased these proliferative pathways (dibutyryl cAMP and protein kinase A) correspondingly diminished Onconase cytotoxicity in microinjection experiments. These results were also mimicked in cell culture experiments since log-phase v-ras-transformed NIH/3T3 cells were more sensitive to Onconase (IC50 of 7 microg/ml) than parental NIH/3T3 fibroblasts (IC50 of 40 microg/ml). Based on those data we postulated that Onconase-mediated cell death in NIH/3T3 cells was related to events occurring at two or more points in the cell cycle preferentially associated with late G1/S and S phases. In contrast, quiescent NIH/3T3 cells were more sensitive to microinjected RNase A than log phase cells and positive mediators of proliferative signal transduction did not enhance RNase A-mediated cytotoxicity. Taken together, these results demonstrate that these two RNases use different pathways and/or mechanisms to elicit cytotoxic responses in NIH/3T3 cells. Predictions formulated from these studies can be tested for relevance to RNase actions in different target tumor cells.  相似文献   

10.
Cell motility and cell polarity are essential for morphogenesis, immune system function, and tissue repair. Many animal cells move by crawling, and one main driving force for movement is derived from the coordinated assembly and disassembly of actin filaments. As tissue culture cells migrate to close a scratch wound, this directional extension is accompanied by Golgi apparatus reorientation, to face the leading wound edge, giving the motile cell inherent polarity aligned relative to the wound edge and to the direction of cell migration. Cellular proteins essential for actin polymerization downstream of Rho family GTPases include the Arp2/3 complex as an actin nucleator and members of the Wiskott-Aldrich Syndrome protein (WASP) family as activators of the Arp2/3 complex. We therefore analyzed the involvement of the Arp2/3 complex and WASP-family proteins in in vitro wound healing assays using NIH 3T3 fibroblasts and astrocytes. In NIH 3T3 cells, we found that actin and Arp2/3 complex contributed to cell polarity establishment. Moreover, overexpression of N-terminal fragments of Scar2 (but not N-WASP or Scar1 or Scar3) interfere with NIH 3T3 Golgi polarization but not with cell migration. In contrast, actin, Arp2/3, and WASP-family proteins did not appear to be involved in Golgi polarization in astrocytes. Our results thus indicate that the requirement for Golgi polarity establishment is cell-type specific. Furthermore, in NIH 3T3 cells, Scar2 and the Arp2/3 complex appear to be involved in the establishment and maintenance of Golgi polarity during directed migration.  相似文献   

11.
Both Arp2/3 complex and the Abl2/Arg nonreceptor tyrosine kinase are essential to form and maintain diverse actin-based structures in cells, including cell edge protrusions in fibroblasts and cancer cells and dendritic spines in neurons. The ability of Arg to promote cell edge protrusions in fibroblasts does not absolutely require kinase activity, raising the question of how Arg might modulate actin assembly and turnover in the absence of kinase function. Arg has two distinct actin-binding domains and interacts physically and functionally with cortactin, an activator of the Arp2/3 complex. However, it was not known whether and how Arg influences actin filament stability, actin branch formation, or cofilin-mediated actin severing or how cortactin influences these reactions of Arg with actin. Arg or cortactin bound to actin filaments stabilizes them from depolymerization. Low concentrations of Arg and cortactin cooperate to stabilize filaments by slowing depolymerization. Arg stimulates formation of actin filament branches by Arp2/3 complex and cortactin. An Arg mutant lacking the C-terminal calponin homology actin-binding domain stimulates actin branch formation by the Arp2/3 complex, indicative of autoinhibition. ArgΔCH can stimulate the Arp2/3 complex even in the absence of cortactin. Arg greatly potentiates cofilin severing of actin filaments, and cortactin attenuates this enhanced severing. The ability of Arg to stabilize filaments, promote branching, and increase severing requires the internal (I/L)WEQ actin-binding domain. These activities likely underlie important roles that Arg plays in the formation, dynamics, and stability of actin-based cellular structures.  相似文献   

12.
13.
The regulation of cell morphology is a dynamic process under the control of multiple protein complexes acting in a coordinated manner. Phosphoinositide 3-kinases (PI3K) and their lipid products are widely involved in cytoskeletal regulation by interacting with proteins regulating RhoGTPases. Class II PI3K isoforms have been implicated in the regulation of the actin cytoskeleton, although their exact role and mechanism of action remain to be established. In this report, we have identified Dbl, a Rho family guanine nucleotide exchange factor (RhoGEF) as an interaction partner of PI3KC2β. Dbl was co-immunoprecipitated with PI3KC2β in NIH3T3 cells and cancer cell lines. Over-expression of Class II phosphoinositide 3-kinase PI3KC2β in NIH3T3 fibroblasts led to increased stress fibres formation and cell spreading. Accordingly, we found high basal RhoA activity and increased serum response factor (SRF) activation downstream of RhoA upon serum stimulation. In contrast, the dominant-negative form of PI3KC2β strongly reduced cell spreading and stress fibres formation, as well as SRF response. Platelet-derived growth factor (PDGF) stimulation of wild-type PI3KC2β over-expressing NIH3T3 cells strongly increased Rac and c-Jun N-terminal kinase (JNK) activation, but failed to show similar effect in the cells with the dominant-negative enzyme. Interestingly, epidermal growth factor (EGF) and PDGF stimulation led to increased extracellular signal-regulated kinase (Erk) and Akt pathway activation in cells with elevated wild-type PI3KC2β expression. Furthermore, increased expression of PI3KC2β protected NIH3T3 from detachment-dependent death (anoikis) in a RhoA-dependent manner. Taken together, these findings suggest that PI3KC2β modulates the cell morphology and survival through a specific interaction with Dbl and the activation of RhoA.  相似文献   

14.
Abstract

The PID1/NYGGF4/PCLI1 gene encodes for a protein with a phosphotyrosine-binding domain, which interacts with the lipoprotein receptor-related protein 1. Previous work by us and others suggested a function of the gene in cell proliferation of NIH3T3 fibroblasts and 3T3-L1 pre-adipocytes. The molecular characterization of PCLI1 protein, ectopically expressed in NIH3T3 fibroblasts, revealed two phosphorylation sites at Ser154 and Ser165. In order to clarify the functions of this gene, we analyzed the effects of its downregulation on cellular proliferation and cell cycle progression in NIH3T3 cell cultures. Downregulation of PID1/NYGGF4/PCLI1 mRNA levels by short hairpin RNAs (shRNAs) elicited decreased proliferation rate in mammalian cell lines; cell cycle analysis of serum-starved, synchronized NIH3T3 fibroblasts showed an increased accumulation of shRNA-interfered cells in the G1 phase. Decreased levels of FOS and MYC mRNAs were accordingly associated with these events. The molecular scenario emerging from our data suggests that PID1/NYGGF4/PCLI1 controls cellular proliferation and cell cycle progression in NIH3T3 cells.  相似文献   

15.
Virus-induced alterations in cell morphology play important roles in the viral life cycle. To examine the intracellular events of coxsackievirus B3 (CVB3) infection, green monkey kidney (GMK) cells were either inoculated with the virus or transfected with the viral RNA. Various microscopic and flow cytometric approaches demonstrated the emergence of CVB3 capsid proteins at 8 h posttransfection, followed by morphological transformation of the cells. The morphological changes included formation of membranous protrusions containing viral capsids, together with microtubules and actin. Translocation of viral capsids into these protrusions was sensitive to cytochalasin D, suggesting the importance of actin in the process. Three-dimensional (3D) live-cell imaging demonstrated frequent contacts between cellular protrusions and adjacent cells. Markedly, in spite of an increase in the cellular viral protein content starting 8 h postinfection, no significant decrease in cell viability or increase in the amount of early apoptotic markers was observed by flow cytometry by 28 h postinfection. Comicroinjection of viral RNA and fluorescent dextran in the presence of neutralizing virus antibody suggested that these protrusions mediated the spread of infection from one cell to another prior to virus-induced cell lysis. Altogether, the CVB3-induced cellular protrusions could function as a hitherto-unknown nonlytic mechanism of cell-to-cell transmission exploited by enteroviruses.  相似文献   

16.
In order to investigate the effects of protein kinase C (PKC) expression on cellular growth and morphology, we established mouse fibroblast cell populations which expressed the rat pkc-γ gene under the control of a retroviral promoter. NIH 3T3 stable transfectants displayed a three-fold increase in total PKC levels. These cells appeared morphologically unaltered but exhibited a stronger mitogenic response to 12-O-tetradecanoylphorbol-13-acetate (TPA) and cardiolipin (CL) as well as enhanced growth in semisolid medium in the presence of TPA. Thus, at these enzyme levels, PKC conferred growth advantages to NIH 3T3 cells only in response to specific activators.  相似文献   

17.
Ephrins and Eph receptors are involved in axon guidance and cellular morphogenesis. An interaction between ephrin and Eph receptors elicits neuronal growth-cone collapse through cytoskeletal disassembly. When NIH3T3 cells were plated onto an ephrinA1-coated surface, the cells both adhered and spread. Adhesion and spreading proceeded concomitantly with changes in both the actin and microtubule cytoskeleton. EphA2, focal adhesion kinase (FAK) and p130(cas) were identified as the major ephrin-dependent phosphotyrosyl proteins during the ephrin-induced morphological changes. Mouse embryonic fibroblasts (MEFs) derived from FAK(-/-) and p130(cas-/-) mice had severe defects in ephrinA1-induced cell spreading, which were reversed after re-expression of FAK or p130(cas), respectively. Expression of a constitutively active EphA2 induced NIH3T3 cells to undergo identical, but ligand-independent, morphological changes. These data show that ephrinA1 can induce cell adhesion and actin cytoskeletal changes in fibroblasts in a FAK- and p130(cas)-dependent manner, through activation of the EphA2 receptor. The finding that ephrin Eph signalling can result in actin cytoskeletal assembly, rather than disassembly, has many implications for ephrin Eph responses in other cell types.  相似文献   

18.
19.
1. Cytoskeletal events associated with retroviral oncogene (v-ras)-mediated transformation were studied in NIH 3T3 fibroblasts and their v-ras-transfected counterparts (3T3/H-1 cells). 2. Abnormal microfilament networks seen in 3T3/H-1 cells reflected significant decreases (approximately 90%) in two cytoskeletal-associated proteins (tropomyosin-1, p35). Neither actin content nor actin mRNA levels were altered, however, v-ras transfectants. 3. p35 mRNA activity in both NIH 3T3 and 3T3/H-1 cells was similar although differential compartmentalization of p35 to the detergent-resistant cytoskeletal fraction was evident only in normal fibroblasts. 4. Proper cytoskeletal organization may be a factor in the regulation of p35 mRNA translation in situ or influence the stability of p35 independent of translational rate.  相似文献   

20.
Kim SE  Choi KY 《Cellular signalling》2007,19(7):1554-1564
WNT3a stimulates proliferation of NIH3T3 cells via activation of the extracellular signal-regulated kinase (ERK) pathway. The RAF-1-->MEK-->ERK cascade was immediately increased by WNT3a treatment, however, the upstream event triggering ERK pathway activation by WNT3a is not clear. WNT3a activated RAS and WNT3a-induced ERK activation was blocked by dominant-negative RAS, indicating that WNT3a might act upstream of RAS. WNT3a-induced ERK pathway activations were blocked by AG1478, the epidermal growth factor receptor (EGFR) inhibitor, and EGFR siRNA. The WNT3a-induced ERK pathway activation was not observed in fibroblasts retaining defective EGFR, but the WNT3a effect was restored by EGFR reconstitution. These results indicate involvement of EGFR in the WNT3a-induced ERK pathway activation. WNT3a-induced motility and cytoskeletal rearrangement as well as proliferation of NIH3T3 cells were blocked by AG1478 and EGFR siRNA or abolished in EGFR knock-out fibroblasts, indicating involvement of EGFR in those cellular processes. WNT3a-induced ERK pathway activation was not affected by Dickkoff-1 (DKK-1), although WNT3a-induced activations of the WNT/beta-catenin pathway and proliferation were reduced by DKK-1. EGFR is involved in WNT3a-induced proliferation via both routes dependent on and independent of the WNT/beta-catenin pathway. These results indicate that WNT3a stimulates proliferation and motility of NIH3T3 fibroblasts via EGFR-mediated ERK pathway activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号