首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this investigation was to examine the physical and performance characteristics of adolescent club volleyball players. Twenty-nine adolescent girls, aged 12 to 17 years (14.31 +/- 1.37) were participants in this investigation. All athletes were members of a competitive volleyball club. The following group values were obtained: height (HT) = 1.69 +/- 0.08 m, weight (WT) = 59.6 +/- 8.2 kg, body fat percentage (BF%) = 20.9 +/- 4.5, lean body mass (LBM) = 46.7 +/- 4.9 kg, modified sit-and-reach (MSR) = 38.7 +/- 7.1 cm, shoulder rotation (SR) = 29.4 +/- 5.6 cm, isometric hand grip (IHG) = 34.5 +/- 5.5 kg, isometric leg strength (ILS) = 77.4 +/- 18.1 kg, vertical jump (VJ) = 35.5 +/- 6.2 cm, standing broad jump (SBJ) =178.8 +/- 20.3 cm, 1-minute sit-ups (SU) = 47.0 +/- 6.7, T-test (TT) = 11.2 +/- 0.8 seconds., shuttle test (SHT) = 9.7 +/- 0.4 seconds, stork stand (SS) = 8.1 +/- 4.1 seconds, serving velocity (SVV) =16.1 +/- 4.5 m.s(-1), and spiking velocity (SKV) = 16.9 +/- 2.4 m.s(-1). For purposes of analysis, players were divided into 2 age groups: 12 to 14 years (group A) and 15 to 17 years (group B). Significant differences (p < 0.05) were found between age groups for the following values: HT, WT, LBM, IHG, ILS, SBJ, and SVV. Values for group B were greater for each variable. Significant correlations include age and IHG (r = 0.75), age and ILS (r = 0.51), age and SBJ (r = 0.67), age and SVV (r = 0.71), LBM and IHG (r = 0.90), LBM and ILS (r = 0.62), LBM and SVV (r = 0.58), SVV and IHG (r = 0.60), and SKV and SS (r = 0.60). Our results suggest that age, experience, LBM, shoulder, hip, and thigh girths, strength, and balance are key physical performance characteristics of adolescent girls who play volleyball. Potentially, this type of information will allow coaches and athletes to identify physical and performance data specific to age groups for purposes of evaluation and player development.  相似文献   

2.
We examined the muscle fatigue characteristics in older men and women and determined whether these were related to the size, strength, or quality of muscle. A total of 1,512 men and women aged 70-79 yr from the Health, Aging, and Body Composition Study participated in this study. Muscle cross-sectional area and attenuation were determined with computed tomography. Skeletal muscle fatigue and strength (peak torque) of the knee extensors and flexors were measured using isokinetic dynamometry. Men were more fatigue resistant than women for both knee extension (fatigue index: 70.4 +/- 15.3 vs. 66.9 +/- 14.3%; P < 0.05) and knee flexion (67.9 +/- 16.4 vs. 64.9 +/- 17.6%; P < 0.05). Peak torque and muscle quality (specific torque) were higher in men than women for knee extension (99.6 +/- 28.2 vs. 63.0 +/- 16.8 N x m and 1.62 +/- 0.43 vs. 1.51 +/- 0.39 N x m/cm2; both P < 0.05) and for knee flexion (74.0 +/- 26.4 vs. 49.6 +/- 15.9 N x m and 2.47 +/- 1.29 vs. 2.22 +/- 0.78 N x m/cm2; both P < 0.05). Total work and power output was greater in men compared with women for both the quadriceps (1,353 +/- 451 vs. 832 +/- 264 J and 87.7 +/- 33.5 vs. 53.3 +/- 19.2 W; both P < 0.05) and the hamstrings (741 +/- 244 vs. 510 +/- 141 J and 35.4 +/- 16.0 vs. 23.7 +/- 10.2 W; both P < 0.05). In both genders, the quadriceps was able to perform more work with greater power compared with the hamstrings. Those who were stronger actually had greater fatigue after adjusting for age, race, physical activity, and total body fat. In conclusion, older men were more fatigue resistant than women, although in both men and women greater fatigue was not related to muscle weakness.  相似文献   

3.
The purpose of this study was to determine the effect of an acute static stretching bout of the biceps brachii on torque, electromyography (EMG), and mechanomyography (MMG) during concentric isokinetic muscle actions. Eighteen (men, n = 10; women, n = 8) adult subjects (M +/- SD age = 22.7 +/- 2.8 years; weight = 78.0 +/- 17.0 kg; height = 177.9 +/- 11.0 cm) performed maximal isokinetic (30 and 270 degrees.s(-1)) forearm flexion strength testing on 2 occasions while EMG and MMG were recorded. Subjects were randomly assigned to stretching (STR) or nonstretching (NSTR) protocols before strength testing. Two-way ANOVAs with repeated measures revealed significantly (p < or = 0.05) greater torque for NSTR (M +/- SEM = 36.9 +/- 3.3 N.m) vs. STR (35.2 +/- 3.3 N.m), significantly greater MMG amplitude for STR vs. NSTR for 30 degrees.s(-1) (STR = 93.5 +/- 14.4 mV; NSTR = 63.1 +/- 10.6 mV) and 270 degrees.s(-1) (STR = 207.6 +/- 35.6 mV; NSTR = 136.4 +/- 31.7 mV), and no difference in EMG amplitude. These results indicate that a greater ability to produce torque without prior stretching is related to the musculotendinous stiffness of the muscle rather than the number of motor units activated. This suggests that performing activities that reduce muscle stiffness (such as stretching), may be detrimental to performance.  相似文献   

4.
How protein metabolism is perturbed during chronic glucocorticoid excess is poorly understood. The aims were to investigate the impact of chronic glucocorticoid excess and restoration of eucortisolemia in Cushing's syndrome (CS) on whole body protein metabolism. Eighteen subjects with CS and 18 normal subjects (NS) underwent assessment of body composition using DEXA and whole body protein turnover with a 3-h constant infusion of l-[(13)C]leucine, allowing calculation of rates of leucine appearance (leucine R(a)), leucine oxidation (L(ox)), and leucine incorporation into protein (LIP). Ten subjects with CS were restudied after restoration of eucortisolemia. Percentage FM was greater (43.9 +/- 1.6 vs. 33.8 +/- 2.4%, P = 0.002) and LBM lower (52.7 +/- 1.6 vs. 62.1 +/- 2.3%, P = 0.002) in CS. LBM was significantly correlated (r(2) > 0.44, P < 0.005) to leuceine R(a), L(ox), and LIP in both groups. After correcting for LBM, leucine R(a) (133 +/- 5 vs. 116 +/- 5 micromol/min, P = 0.02) and L(ox) (29 +/- 1 vs. 24 +/- 1 micromol/min, P = 0.01) were greater in CS. FM significantly correlated (r(2) = 0.23, P < 0.05) with leucine R(a) and LIP, but not L(ox) in CS. In multiple regression, LBM was an independent determinant of all three indexes of leucine turnover, FM of leucine R(a), and LIP and CS of L(ox). Following restoration of eucortisolemia, L(ox) was reduced (Delta-7.5 +/- 2.6 micromol/min, P = 0.02) and LIP increased (Delta+15.2 +/- 6.2 micromol/min, P = 0.04). In summary, whole body protein metabolism in CS is influenced by changes in body composition and glucocorticoid excess per se, which increases protein oxidation. Enhanced protein oxidation is a likely explanation for the reduced protein mass in CS. Successful treatment of CS reduces protein oxidation and increases protein synthesis to prevent ongoing protein loss.  相似文献   

5.
During a maximal isometric plantar flexion effort the moment measured at the dynamometer differs from the resultant ankle joint moment. The present study investigated the effects of contraction form and contraction velocity during isokinetic plantar/dorsal flexion efforts on the differences between resultant and measured moments due to the misalignment between ankle and dynamometer axes. Eleven male subjects (age: 31+/-6 years, mass: 80.6+/-9.6 kg, height: 178.4+/-7.4 cm) participated in this study. All subjects performed isometric-shortening-stretch-isometric contractions induced by electrical stimulation at three different angular velocities (25 degrees /s, 50 degrees /s and 100 degrees /s) on a customised dynamometer. The kinematics of the leg were recorded using the vicon 624 system with eight cameras operating at 250 Hz. The resultant moments at the ankle joint were calculated through inverse dynamics. The relative differences between resultant and measured ankle joint moments due to axis misalignment were fairly similar in all phases of the isometric-shortening-stretch-isometric contraction (in average 5-9% of the measured moment). Furthermore these findings were independent of the contraction velocity. During dynamic plantar/dorsal flexion contractions the differences between measured and resultant joint moment are high enough to influence conclusions regarding the mechanical response of ankle extensor muscles. However the relative differences were not increased during dynamic contractions as compared to isometric contractions.  相似文献   

6.
Orthostatic tolerance is reduced in the heat-stressed human. This study tested the following hypotheses: 1) whole body heat stress reduces cerebral blood velocity (CBV) and increases cerebral vascular resistance (CVR); and 2) reductions in CBV and increases in CVR in response to an orthostatic challenge will be greater while subjects are heat stressed. Fifteen subjects were instrumented for measurements of CBV (transcranial ultrasonography), mean arterial blood pressure (MAP), heart rate, and internal temperature. Whole body heating increased both internal temperature (36.4+/-0.1 to 37.3+/-0.1 degrees C) and heart rate (59+/-3 to 90+/-3 beats/min); P<0.001. Whole body heating also reduced CBV (62+/-3 to 53+/-2 cm/s) primarily via an elevation in CVR (1.35+/-0.06 to 1.63+/-0.07 mmHg.cm-1.s; P<0.001. A subset of subjects (n=8) were exposed to lower-body negative pressure (LBNP 10, 20, 30, 40 mmHg) in both normothermic and heat-stressed conditions. During normothermia, LBNP of 30 mmHg (highest level of LBNP achieved by the majority of subjects in both thermal conditions) did not significantly alter CBV, CVR, or MAP. During whole body heating, this LBNP decreased MAP (81+/-2 to 75+/-3 mmHg), decreased CBV (50+/-4 to 39+/-1 cm/s), and increased CVR (1.67+/-0.17 to 1.92+/-0.12 mmHg.cm-1.s); P<0.05. These data indicate that heat stress decreases CBV, and the reduction in CBV for a given orthostatic challenge is greater during heat stress. These outcomes reduce the reserve to buffer further decreases in cerebral perfusion before presyncope. Increases in CVR during whole body heating, coupled with even greater increases in CVR during orthostasis and heat stress, likely contribute to orthostatic intolerance.  相似文献   

7.
OBJECTIVES: To investigate the impact of short-term growth measurements on predicting the individual growth response to GH treatment, and to elucidate the possible reasons for the limited accuracy of current growth prediction models for GH-treated children. METHODS: Short-term growth measurements by knemometry and stadiometer in 99 short, GH-treated children (27 girls, 72 boys), aged 10.3 +/- 2.3 years, from the Children's University Hospital, Leipzig, Germany. RESULTS: GH treatment significantly accelerated the mean height velocity (HV) from 4.3 +/- 1.0 to 8.1 +/- 1.8 cm/year during the first year of treatment, the average height standard deviation score (SDS) shifted by +0.52 SD. The variation in HV also increased, from S(2) = 1.0 before to S(2) = 3.4 cm(2)/year(2) during treatment. Lower leg length (LLL) velocity accelerated from 1.6 +/- 0.7 before treatment to 3.4 +/- 1.0 cm/year during the first 8 weeks of treatment. Four coefficients of correlation appeared clinically meaningful: (1) LLL velocity vs. body HV during the first year of GH treatment (r = 0.87), indicating that GH acts simultaneously on leg and rump growth; (2) early (first 8 weeks) LLL velocity vs. 1-year body HV during treatment, with r = 0.61 (R(2) = 0.38), indicating that 38% of the variation in HV during the first year of treatment is already predictable by an initial 8-week period of knemometry; (3) early (first 8 weeks) LLL velocity vs. 1-year LLL velocity during treatment, with r = 0.63 (R(2) = 0.39), and (4) early (first 8 weeks) LLL velocity vs. later LLL velocity, up to the end of the first year, with r = 0.53 (R(2) = 0.28) indicating that the early response on lower leg growth persists for at least 1 year of GH treatment. CONCLUSIONS: (1) Thirty-eight percent of the variation in HV during the first year of GH treatment is predictable by an initial 8-week period of knemometry. This parallels early changes in biochemical markers of bone turnover after GH treatment. (2) There is evidence for a baseline variability in HV both in healthy children and in children with growth disorders that make growth prediction difficult.  相似文献   

8.
We studied glucose oxidation (Glu(ox)) and glycogen degradation during 140 min of constant-load [steady-state (SS)] and variable-intensity (VI) cycling of the same average power output, immediately followed by a 20-km performance ride [time trial (TT)]. Six trained cyclists each performed four trials: two experimental bouts (SS and VI) in which muscle biopsies were taken before and after 140 min of exercise for determination of glycogen and periodic acid-Schiff's staining; and two similar trials without biopsies but incorporating the TT. During two of the experimental rides, subjects ingested a 5 g/100 ml [U-(14)C]glucose solution to determine rates of Glu(ox). Values were similar between SS and VI trials: O(2) consumption (3.08 +/- 0.02 vs. 3.15 +/- 0.03 l/min), energy expenditure (901 +/- 40 vs. 904 +/- 58 J x kg(-1) x min(-1)), heart rate (156 +/- 1 vs. 160 +/- 1 beats/min), and rating of perceived exertion (12.6 +/- 0.6 vs. 12.7 +/- 0.7). However, the area under the curve for plasma lactate concentration vs. time was significantly greater during VI than SS (29.1 +/- 3.9 vs. 24.6 +/- 3. 7 mM/140 min; P = 0.03). VI resulted in a 49% reduction in total muscle glycogen utilization vs. 65% for SS, while total Glu(ox) was higher (99.2 +/- 5.3 vs. 83.9 +/- 5.2 g/140 min; P < 0.05). The number of glycogen-depleted type I muscle fibers at the end of 140 min was 98% after SS but only 59% after VI. Conversely, the number of type II fibers that showed reduced periodic acid-Schiff's staining was 1% after SS vs. 10% after VI. Despite these metabolic differences, subsequent TT performance was similar (29.14 +/- 0.9 vs. 30.5 +/- 0.9 min for SS vs. VI). These results indicate that whole body metabolic and cardiovascular responses to 140 min of either SS or VI exercise at the same average intensity are similar, despite differences in skeletal muscle carbohydrate metabolism and recruitment.  相似文献   

9.
The purpose of this study was to investigate the effect of weighted jump squat training with and without eccentric braking. Twenty male subjects were divided into two groups (n = 10 per group), Non-Braking Group and Braking Group. The subjects were physically active, but not highly trained. The program for Non-Braking Group consisted of 6 sets of 6 repetitions of weighted jump squats without reduction of eccentric load for 8 weeks. The training program for the Braking Group consisted of the same sets and repetitions, but eccentric load was reduced by using an electromagnetic braking mechanism. Jump and reach, countermovement jump, static jump, drop jump, one repetition maximum half squat, weighted jump squat, and isometric/isokinetic knee extension/flexion at several different positions/angular velocities were tested pre- and posttraining intervention. The Non-Braking Group exhibited greater improvement in peak torque during isokinetic concentric knee flexion at 300 degrees/s [Non-Braking Group: (mean +/- SD) 124.0 +/- 22.6 Nm at pre- and 134.1 +/- 18.4 Nm at posttraining, and Braking Group: 118.5 +/- 32.7 Nm at pre- and 113.2 +/- 26.7 Nm at posttraining]. Braking Group exhibited superior adaptations in peak power relative to body mass during weighted jump squat [Non-Braking Group: (mean +/- SD) 49.1 +/- 8.6 W/kg at pre- and 50.9 +/- 6.2 W/kg at posttraining, and Braking Group: 47.9 +/- 6.9 W/kg at pre- and 53.7 +/- 7.3 W/kg at posttraining]. It appears that power output in relatively slow movement (weighted jump squat) was improved more in the Braking Group, however strength in high velocity movements (isokinetic knee flexion at 300 degrees/s) was improved more in Non-Braking Group. This study supports load and velocity specific effects of weighted jump squat training.  相似文献   

10.
The purpose of this study was to examine the ability to control knee-extension force during discrete isometric (IC), concentric (CC), and eccentric contractions (EC) in 24 young (mean age +/- SD = 25.3 +/- 2.8 yr) and 24 old (mean age +/- SD = 73.3 +/- 5.5 yr) healthy and active individuals. Subjects were to match a parabola with a time to peak force of 200 ms during IC, CC, and EC at six target levels of force [20, 35, 50, 65, 80, and 90% of the maximum voluntary contraction (MVC)]. ICs were performed at 90 degrees of knee flexion, whereas CCs and ECs ranged from 90 to 80 degrees of knee flexion (0 degrees is full extension) at a slow velocity (25 degrees /s). Results showed that subjects produced similar MVC forces for the three types of contractions. Young subjects produced greater MVC forces than old subjects, and within each age group, men produced greater force than women. The variability (standard deviation) of peak force and impulse in absolute values was greater for young compared with old subjects. When variability was normalized to the force produced [coefficient of variation (CV)], however, old subjects exhibited greater CV than young subjects for peak force and impulse. Both the standard deviation and CV of time to peak force and impulse duration were greater for the old adults. In general, ECs were more variable than ICs and CCs, and old adults exhibited greater CV compared with young adults during rapid, discrete ICs, CCs, and particularly ECs of the quadriceps.  相似文献   

11.
We tested the hypothesis that static contraction causes greater reflex cardiovascular responses than dynamic contraction at equivalent workloads [i.e., same tension-time index (TTI), holding either contraction time or peak tension constant] in chloralose-anesthetized cats. When time was held constant and tension was allowed to vary, dynamic contraction of the hindlimb muscles evoked greater increases (means +/- SE) in mean arterial pressure (MAP; 50 +/- 7 vs. 30 +/- 5 mmHg), popliteal blood velocity (15 +/- 3 vs. 5 +/- 1 cm/s), popliteal venous PCO(2) (15 +/- 3 vs. 3 +/- 1 mmHg), and a greater decrease in popliteal venous pH (0.07 +/- 0.01 vs. 0.03 +/- 0.01), suggesting greater metabolic stimulation during dynamic contraction. Similarly, when peak tension was held constant and time was allowed to vary, dynamic contraction evoked a greater increase in blood velocity (13 +/- 1 vs. -1 +/- 1 cm/s) without causing any differences in other variables. To investigate the reflex contribution of mechanoreceptors, we stretched the hindlimb dynamically and statically at the same TTI. A larger reflex increase in MAP during dynamic stretch (32 +/- 8 vs. 24 +/- 6 mmHg) was observed when time was held constant, indicating greater mechanoreceptor stimulation. However, when peak tension was held constant, there were no differences in the reflex cardiovascular response to static and dynamic stretch. In conclusion, at comparable TTI, when peak tension is variable, dynamic muscle contraction causes larger cardiovascular responses than static contraction because of greater chemical and mechanical stimulation. However, when peak tensions are equivalent, static and dynamic contraction or stretch produce similar cardiovascular responses.  相似文献   

12.
ABSTRACT: Amiri-Khorasani, M, MohammadKazemi, R, Sarafrazi, S, Riyahi-Malayeri, S, and Sotoodeh, V. Kinematics analyses related to stretch-shortening cycle during soccer instep kicking after different acute stretching. J Strength Cond Res 26(11): 3010-3017, 2012-The purpose of this study was to examine the effects of static and dynamic stretching within a preexercise warm-up on angular velocity of knee joint, deepest knee flexion (DKF), and duration of eccentric and concentric contractions, which are relative to the stretch-shortening cycle (SSC) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 Olympic professional male soccer players (height: 180.38 ± 7.34 cm; weight: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 digital video cameras at 50 Hz. There was a significant difference in the DKF after the dynamic stretching (-3.22 ± 3.10°) vs. static stretching (-0.18 ± 3.19°) relative to the no-stretching method with p < 0.001. Moreover, there was significant difference in eccentric duration after the dynamic stretching (0.006 ± 0.01 seconds) vs. static stretching (-0.003 ± 0.01 seconds) relative to the no-stretching method with p < 0.015. There was a significant difference in the concentric duration after the dynamic stretching (-0.007 ± 0.01 seconds) vs. static stretching (0.002 ± 0.01 seconds) relative to the no-stretching method with p < 0.001. There was also a significant difference in knee angular velocity after the dynamic stretching (4.08 ± 3.81 rad·s) vs. static stretching (-5.34 ± 4.40 rad·s) relative to the no-stretching method with p < 0.001. We concluded that dynamic stretching during warm-ups, as compared with static stretching, is probably the most effective way as preparation for the kinematics characteristics of soccer instep kick, which are relative to the SSC.  相似文献   

13.
The human triceps surae muscle-tendon complex is a unique structure with three separate muscle compartments that merge via their aponeuroses into the Achilles tendon. The mechanical function and properties of these structures during muscular contraction are not well understood. The purpose of the study was to investigate the extent to which differential displacement occurs between the aponeuroses of the medial gastrocnemius (MG) and soleus (Sol) muscles during plantar flexion. Eight subjects (mean +/- SD; age 30 +/- 7 yr, body mass 76.8 +/- 5.5 kg, height 1.83 +/- 0.06 m) performed maximal isometric ramp contractions with the plantar flexor muscles. The experiment was performed in two positions: position 1, in which the knee joint was maximally extended, and position 2, in which the knee joint was maximally flexed (125 degrees ). Plantarflexion moment was assessed with a strain gauge load cell, and the corresponding displacement of the MG and Sol aponeuroses was measured by ultrasonography. Differential shear displacement of the aponeurosis was quantified by subtracting displacement of Sol from that of MG. Maximal plantar flexion moment was 36% greater in position 1 than in position 2 (132 +/- 20 vs. 97 +/- 11 N.m). In position 1, the displacement of the MG aponeurosis at maximal force exceeded that of the Sol (12.6 +/- 1.7 vs. 8.9 +/- 1.5 mm), whereas in position 2 displacement of the Sol was greater than displacement of the MG (9.6 +/- 1.0 vs. 7.9 +/- 1.2 mm). The amount and "direction" of shear between the aponeuroses differed significantly between the two positions across the entire range of contraction, indicating that the Achilles tendon may be exposed to intratendinous shear and stress gradients during human locomotion.  相似文献   

14.
Small knee flexion angle during landing has been proposed as a potential risk factor for sustaining noncontact ACL injury. A brace that promotes increased knee flexion and decreased posterior ground reaction force during landing may prove to be advantageous for developing prevention strategies. Forty male and forty female recreational athletes were recruited. Three-dimensional videographic and ground reaction force data in a stop-jump task were collected in three conditions. Knee flexion angle at peak posterior ground reaction force, peak posterior ground reaction force, the horizontal velocity of approach run, the vertical velocity at takeoff, and the knee flexion angle at takeoff were compared among conditions: knee extension constraint brace, nonconstraint brace, and no brace. The knee extension constraint brace significantly increased knee flexion angle at peak posterior ground reaction force. Both knee extension constraint brace and nonconstraint brace significantly decreased peak posterior ground reaction force during landing. The brace and knee extension constraint did not significantly affect the horizontal velocity of approach run, the vertical velocity at takeoff, and the knee flexion angle at takeoff. A knee extension constraint brace exhibits the ability to modify the knee flexion angle at peak posterior ground reaction force and peak posterior ground reaction force during landing.  相似文献   

15.
The purpose was to assess whether body cooling between 2 bouts of exercise in the heat enhances performance during the second exercise session. Using a random, crossover design, 15 subjects (3 women, 12 men; 28 +/- 2 years, 180 +/- 2 cm, 69 +/- 2.3 kg) participated in all 3 trials. Subjects ran 90 minutes on hilly trails in a hot environment (approximately 27 degrees C) before 12 minutes of either cold water immersion (CWI; 13.98 degrees C), ice water immersion (IWI; 5.23 degrees C), or a mock treatment (MT) of sitting in a tub with no water (29.50 degrees C). After immersion, subjects ran a 2-mile race. CWI had faster (p < 0.05) performance time (725 seconds) than MT (769 seconds). CWI and IWI had significantly (p < 0.05) lower rectal temperatures postimmersion than MT as well as postrace (p < 0.05). Heart rate also remained significantly lower (p < 0.05) during the CWI and IWI trials for the first half of the race. In conclusion, CWI enhances performance (6% improvement in race time) in the second bout of exercise, supporting its potential role as an ergogenic aid in athletic performance.  相似文献   

16.
Although exercise training-induced changes in left ventricular (LV) structure are well characterized, adaptive functional changes are incompletely understood. Detailed echocardiographic assessment of LV systolic function was performed on 20 competitive rowers (10 males and 10 females) before and after endurance exercise training (EET; 90 days, 10.7 +/- 1.1 h/wk). Structural changes included LV dilation (end-diastolic volume = 128 +/- 25 vs. 144 +/- 28 ml, P < 0.001), right ventricular (RV) dilation (end-diastolic area = 2,850 +/- 550 vs. 3,260 +/- 530 mm2, P < 0.001), and LV hypertrophy (mass = 227 +/- 51 vs. 256 +/- 56 g, P < 0.001). Although LV ejection fraction was unchanged (62 +/- 3% vs. 60 +/- 3%, P = not significant), all direct measures of LV systolic function were altered. Peak systolic tissue velocities increased significantly (basal lateral S'Delta = 0.9 +/- 0.6 cm/s, P = 0.004; and basal septal S'Delta = 0.8 +/- 0.4 cm/s, P = 0.008). Radial strain increased similarly in all segments, whereas longitudinal strain increased with a base-to-apex gradient. In contrast, circumferential strain (CS) increased in the LV free wall but decreased in regions adjacent to the RV. Reductions in septal CS correlated strongly with changes in RV structure (DeltaRV end-diastolic area vs. DeltaLV septal CS; r2 = 0.898, P < 0.001) and function (Deltapeak RV systolic velocity vs. DeltaLV septal CS, r2 = 0.697, P < 0.001). EET leads to significant changes in LV systolic function with regional heterogeneity that may be secondary to concomitant RV adaptation. These changes are not detected by conventional measurements such as ejection fraction.  相似文献   

17.
Ageing and isokinetic plantar flexion   总被引:1,自引:0,他引:1  
Isokinetic torques (Cybex II) of the plantar flexors in 25 healthy men were compared at 5 angular velocities (30, 60, 90, 120 and 180 degrees X s-1). The purposes were to compare plantar flexion torques in young and old subjects, and to determine whether the expected decrease was significantly associated with age, physical activity, or aerobic fitness. Four groups were studied: young (21.7 +/- 2.0 years) and older (63.3 +/- 2.8 years), active and sedentary. Measurements of height, weight, % body fat, VO2max, and daily leisure energy expenditure (questionnaire) were determined for each subject. Statistical measures of analysis of variance were used to determine significant differences among groups; product moment correlation and stepwise regression analysis were used to describe the degree of association between the dependent variable of plantar flexion torque and the independent variables at each velocity. A decline in torque was observed as the isokinetic velocity of angular motion increased. Age alone was a significant determinant of plantar flexion torque, whereas at the slowest speed, when VO2max was used as an explanatory variable, age was not a significant determinant of torque. At 30 degrees X s-1 47% of the variance in torque was explained by VO2max while at 180 degrees X s-1 49% of the variance was explained by age.  相似文献   

18.
The purpose of this study was to examine the effects of a comprehensive neuromuscular training program on measures of performance and lower-extremity movement biomechanics in female athletes. The hypothesis was that significant improvements in measures of performance would be demonstrated concomitant with improved biomechanical measures related to anterior cruciate ligament injury risk. Forty-one female basketball, soccer, and volleyball players (age, 15.3 +/- 0.9 years; weight, 64.8 +/- 9.96 kg; height, 171.2 +/- 7.21 cm) underwent 6 weeks of training that included 4 main components (plyometric and movement, core strengthening and balance, resistance training, and speed training). Twelve age-, height-, and weight-matched controls underwent the same testing protocol twice 6 weeks apart. Trained athletes demonstrated increased predicted 1 repetition maximum squat (92%) and bench press (20%). Right and left single-leg hop distance increased 10.39 cm and 8.53 cm, respectively, and vertical jump also increased from 39.9 +/- 0.9 cm to 43.2 +/- 1.1 cm with training. Speed in a 9.1-m sprint improved from 1.80 +/- 0.02 seconds to 1.73 +/- 0.01 seconds. Pre- and posttest 3-dimensional motion analysis demonstrated increased knee flexion-extension range of motion during the landing phase of a vertical jump (right, 71.9 +/- 1.4 degrees to 76.9 +/- 1.4 degrees ; left, 71.3 +/- 1.5 degrees to 77.3 +/- 1.4 degrees ). Training decreased knee valgus (28%) and varus (38%) torques. Control subjects did not demonstrate significant alterations during the 6-week interval. The results of this study support the hypothesis that the combination of multiple-injury prevention-training components into a comprehensive program improves measures of performance and movement biomechanics.  相似文献   

19.
The body height, weight and growth velocity were investigated in 416 patients with Turner's syndrome whose age ranged from 3 to 17 years. They were all prepubertal at the time of the present study. The chromosomal analysis revealed 45, X monosomy in 148 cases, mosaicism in 208 cases, and nonmosaic structural abnormalities of X chromosome in 60 cases. There were no significant differences in height, growth velocity and weight between the patients with the 45, X karyotype and those with other chromosomal variants at any age. Combined mean heights at 3, 10 and 17 years of age were 86.0 +/- 3.5 (m +/- SD), 116.7 +/- 5.8 and 136.8 +/- 4.8 cm, respectively. These values were below -2.0 SD of normal Japanese girls. The growth velocity was 6.0 +/- 0.5 cm/year at 4 years of age, but decreased gradually and was 1.6 +/- 0.7 cm/year at 17 years of age. The degree of overweight was within +/- 10% of ideal body weight for height between the ages of 3 and 8, 10-20% between the ages of 9 and 10, and 20-30% above the age of 11 years.  相似文献   

20.
The purpose of this investigation was to examine the combined effects of resistance and sprint/plyometric training with or without the Meridian Elyte athletic shoe on muscular performance in women. Fourteen resistance-trained women were randomly assigned to one of 2 training groups: (a) an athletic shoe (N = 6) (AS) group or (b) the Meridian Elyte (N = 8) (MS) group. Training was performed for 10 weeks and consisted of resistance training for 2 days per week and 2 days per week of sprint/plyometric training. Linear periodized resistance training consisted of 5 exercises per workout (4 lower body, 1 upper body) for 3 sets of 3-12 repetition maximum (RM). Sprint/plyometric training consisted of 5-7 exercises per workout (4-5 plyometric exercises, 40-yd and 60-yd sprints) for 3-6 sets with gradually increasing volume (8 weeks) followed by a 2-week taper phase. Assessments for 1RM squat and bench press, vertical jump, broad jump, sprint speed, and body composition were performed before and following the 10-week training period. Significant increases were observed in both AS and MS groups in 1RM squat (12.0 vs. 14.6 kg), bench press (6.8 vs. 7.4 kg), vertical jump height (3.3 vs. 2.3 cm), and broad jump (17.8 vs. 15.2 cm). Similar decreases in peak 20-, 40-, and 60-m sprint times were observed in both groups (20 m: 0.14 vs. 0.11 seconds; 40 m: 0.29 vs. 0.34 seconds; 60 m: 0.45 vs. 0.46 seconds in AS and MS groups, respectively). However, when sprint endurance (the difference between the fastest and slowest sprint trials) was analyzed, there was a significantly greater improvement at 60 m in the MS group. These results indicated that similar improvements in peak sprint speed and jumping ability were observed following 10 weeks of training with either shoe. However, high-intensity sprint endurance at 60 m increased to a greater extent during training with the Meridian Elyte athletic shoe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号