首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
SSY. Su  A. P. Mitchell 《Genetics》1993,133(1):67-77
Meiosis and spore formation in the yeast Saccharomyces cerevisiae are associated with increased expression of sporulation-specific genes. One of these genes, IME2, encodes a putative protein kinase that is a positive regulator of other sporulation-specific genes. We have isolated mutations that cause reduced expression of an ime2-lacZ fusion gene. We found mutations in IME1, a known positive regulator of IME2, and MCK1, a known positive regulator of IME1. We also isolated recessive mutations in 12 other genes, which we designate RIM (Regulator of IME2) genes. Our analysis indicates that the defects in rim1, rim8, rim9 and rim13 mutants are a consequence of diminished IME1 expression and can be suppressed by expression of IME1 from the heterologous ACT1 promoter. These rim mutations also reduced expression of an ime1-HIS3 fusion, in which the HIS3 gene is expressed from the IME1 promoter, and caused reduced levels of IME1 RNA. Although the rim1, rim8, rim9 and rim13 mutant phenotypes are similar to those of mck1 mutants, we found that the defects in ime2-lacZ expression and sporulation of the mck1 rim double mutants were more severe than either single mutant. In contrast, the defects of the rim rim double mutants were similar to either single mutant. The rim1, rim8, rim9 and rim13 mutants also display slow growth at 17° and share a smooth colony morphology that is not evident in mck1 mutants or isogenic wild-type strains. We suggest that RIM1, RIM8, RIM9 and RIM13 encode functionally related products that act in parallel to MCK1 to stimulate IME1 expression.  相似文献   

2.
Candida albicans is an important commensal of mucosal surfaces that is also an opportunistic pathogen. This organism colonizes a wide range of host sites that differ in pH; thus, it must respond appropriately to this environmental stress to survive. The ability to respond to neutral-to-alkaline pHs is governed in part by the RIM101 signal transduction pathway. Here we describe the analysis of C. albicans Rim13p, a homolog of the Rim13p/PalB calpain-like protease member of the RIM101/pacC pathway from Saccharomyces cerevisiae and Aspergillus nidulans, respectively. RIM13, like other members of the RIM101 pathway, is required for alkaline pH-induced filamentation and growth under extreme alkaline conditions. Further, our studies suggest that the RIM101 pathway promotes pH-independent responses, including resistance to high concentrations of lithium and to the drug hygromycin B. RIM13 encodes a calpain-like protease, and we found that Rim101p undergoes a Rim13p-dependent C-terminal proteolytic processing event at neutral-to-alkaline pHs, similar to that reported for S. cerevisiae Rim101p and A. nidulans PacC. However, we present evidence that suggests that C. albicans Rim101p undergoes a novel processing event at acidic pHs that has not been reported in either S. cerevisiae or A. nidulans. Thus, our results provide a framework to understand how the C. albicans Rim101p processing pathway promotes alkaline pH-independent processes.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号