首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving feed efficiency is a key breeding goal in the beef cattle industry. In this study, we estimated the genetic parameters for feed efficiency and carcass traits in Senepol cattle raised in tropical regions. Various indicators of feed efficiency [gain to feed ratio (G:F), feed conversion ratio (FCR), residual weight gain (RG), residual intake and body weight gain (RIG), and residual feed intake (RFI)] as well as growth [final BW, average daily gain (ADG), and DM intake (DMI)], and carcass [rib-eye area (REA), backfat thickness (BF), intramuscular fat score, and carcass conformation score] traits were included in the study. After data editing, records from 1 393 heifers obtained between 2009 and 2018 were used for the analyses. We fitted an animal model that included contemporary group (animals from the same farm that were evaluated in the same test season) as the fixed effect, and a linear effect of animal age at the beginning of the test as a covariate; in addition to random direct additive genetic and residual effects. The (co)variance components were estimated by Bayesian inference in uni- and bivariate analyses. Our results showed that feed efficiency indicators derived from residual variables such as RG, RIG, and RFI can be improved through genetic selection (h2 = 0.14 ± 0.06, 0.13 ± 0.06, and 0.20 ± 0.08, respectively). Variables calculated as ratios such as G:F and FCR were more influenced by environmental factors (h2 = 0.08 ± 0.05 and 0.09 ± 0.05), and were, therefore, less suitable for use in breeding programs. The traits with the greatest and impact on genetic progress in feed efficiency were ADG, REA, and BF. The traits with the greatest and least impact on growth and carcass traits were RG and RFI, respectively. Selection for feed efficiency will result in distinct overall effects on the growth and carcass traits of Senepol heifers. Direct selection for lower RFI may reduce DMI and increase carcass fatness at the finishing stage, but it might also result in reduced growth and muscle deposition. Residual BW gain is associated with the highest weight gain and zero impact on REA and BF, however, it is linked to higher feed consumption. Thus, the most suitable feed efficiency indicator was RIG, as it promoted the greatest decrease in feed intake concomitant with faster growth, with a similar impact on carcass traits when compared to the other feed efficiency indicators.  相似文献   

2.

Background

Since feed represents 70% of the total cost in poultry production systems, an animal’s ability to convert feed is an important trait. In this study, residual feed intake (RFI) and residual body weight gain (RG), and their linear combination into residual feed intake and body weight gain (RIG) were studied to estimate their genetic parameters and analyze the potential differences in feed intake between the top ranked birds based on the criteria for each trait.

Methods

Phenotypic and genetic analyses were completed on 8340 growing tom turkeys that were measured for feed intake and body weight gain over a four-week period from 16 to 20 weeks of age.

Results

The heritabilities of RG and RIG were 0.19 ± 0.03 and 0.23 ± 0.03, respectively. Residual body weight gain had moderate genetic correlations with feed intake (−0.41) and body weight gain (0.43). All three linear combinations to form the RIG traits had genetic correlations ranging from −0.62 to −0.52 with feed intake, and slightly weaker, 0.22 to 0.34, with body weight gain. Sorted into three equal groups (low, medium, high) based on RG, the most efficient group (high) gained 0.62 and 1.70 kg more (P < 0.001) body weight than that of the medium and low groups, yet the feed intake for the high group was less (P < 0.05) than that of the medium group (19.52 vs. 19.75 kg). When separated into similar partitions, the high RIG group (most efficient) had both the lowest (P < 0.001) feed intake (18.86 vs. 19.57 and 20.41 kg) and the highest (P < 0.001) body weight gain (7.41 vs. 7.03 and 6.43 kg) relative to the medium and low groups, respectively.

Conclusions

The difference in feed intake between the top ranked birds based on different residual feed efficiency traits may be small when looking at the average individual, however, when extrapolated to the production level, the lower feed intake values could lead to significant savings in feed costs over time.  相似文献   

3.
As feed intake is an expensive trait to measure in a breeding program, this study investigated whether body surface temperature was correlated with feed efficiency in the turkey. Infrared images were captured on male turkeys in individual feeding cages at approximately 19-weeks of age. Body surface temperature was measured on the eye, head, distal metatarsus, and neck of the birds with temperatures ranging from 34 °C to 40 °C. Body weight, feed intake, and weight gain data were collected and feed efficiency was measured as residual feed intake (RFI) and feed conversion ratio (FCR). Distal metatarsus temperature showed moderate correlations with body weight (0.15), average daily gain (0.26) and feed intake (0.23). Surface temperature of the head, eye, and neck were not as strongly correlated with these production traits. The feed efficiency traits showed low correlations with eye temperature ranging from −0.05 to −0.12 and surface temperatures at the head, distal metatarsus, and neck were not correlated with feed efficiency. Surface temperature traits explained only a small proportion of variation in feed intake. While the collection of infrared images was efficient and required minimal contact with the caged birds, the low correlations indicate that the technology, as used in this study, has limited advantages for increasing the accuracy of selection for feed efficiency.  相似文献   

4.
The aim of this study was to determine the genetic background of longitudinal residual feed intake (RFI) and BW gain in farmed mink using random regression methods considering heterogeneous residual variances. The individual BW was measured every 3 weeks from 63 to 210 days of age for 2139 male+female pairs of juvenile mink during the growing-furring period. Cumulative feed intake was calculated six times with 3-week intervals based on daily feed consumption between weighing’s from 105 to 210 days of age. Genetic parameters for RFI and BW gain in males and females were obtained using univariate random regression with Legendre polynomials containing an animal genetic effect and permanent environmental effect of litter along with heterogeneous residual variances. Heritability estimates for RFI increased with age from 0.18 (0.03, posterior standard deviation (PSD)) at 105 days of age to 0.49 (0.03, PSD) and 0.46 (0.03, PSD) at 210 days of age in male and female mink, respectively. The heritability estimates for BW gain increased with age and had moderate to high range for males (0.33 (0.02, PSD) to 0.84 (0.02, PSD)) and females (0.35 (0.03, PSD) to 0.85 (0.02, PSD)). RFI estimates during the growing period (105 to 126 days of age) showed high positive genetic correlations with the pelting RFI (210 days of age) in male (0.86 to 0.97) and female (0.92 to 0.98). However, phenotypic correlations were lower from 0.47 to 0.76 in males and 0.61 to 0.75 in females. Furthermore, BW records in the growing period (63 to 126 days of age) had moderate (male: 0.39, female: 0.53) to high (male: 0.87, female: 0.94) genetic correlations with pelting BW (210 days of age). The result of current study showed that RFI and BW in mink are highly heritable, especially at the late furring period, suggesting potential for large genetic gains for these traits. The genetic correlations suggested that substantial genetic gain can be obtained by only considering the RFI estimate and BW at pelting, however, lower genetic correlations than unity indicate that extra genetic gain can be obtained by including estimates of these traits during the growing period. This study suggests random regression methods are suitable for analysing feed efficiency and BW gain; and genetic selection for RFI in mink is promising.  相似文献   

5.
6.
To identify a proper strategy for future feed-efficient pig farming, it is required to evaluate the ongoing selection scenarios. Tools are lacking for the evaluation of pig selection scenarios in terms of environmental impacts to provide selection guidelines for a more sustainable pig production. Selection on residual feed intake (RFI) has been proposed to improve feed efficiency and potentially reduce the associated environmental impacts. The aim of this study was thus to develop a model to account for individual animal performance in life cycle assessment (LCA) methods to quantify the responses to selection. Experimental data were collected from the fifth generation of pig lines divergently selected for RFI (low line, more efficient pigs, LRFI; high line, less efficient pigs, HRFI). The average feed conversion ratio (FCR) and daily feed intake of LRFI pigs were 7% lower than the average of HRFI pigs (P < 0.0001). A parametric model was developed for LCA based on the dietary net energy fluxes in a pig system. A nutritional pig growth tool, InraPorc®, was included as a module in the model to embed flexibility for changes in feed composition, animal performance traits and housing conditions and to simulate individual pig performance. The comparative individual-based LCA showed that LRFI had an average of 7% lower environmental impacts per kilogram live pig at farm gate compared to HRFI (P < 0.0001) on climate change, acidification potential, freshwater eutrophication potential, land occupation and water depletion. High correlations between FCR and all environmental impact categories (>0.95) confirmed the importance of improvement in feed efficiency to reduce environmental impacts. Significant line differences in all impact categories and moderate correlations with impacts (>0.51) revealed that RFI is an effective measure to select for improved environmental impacts, despite lower correlations compared to FCR. Altogether more optimal criteria for efficient environment-friendly selection can then be expected through restructuring the selection indexes from an environmental point of view.  相似文献   

7.
The concept of residual feed intake (RFI), in determining differences among animals in converting feed into body tissue, was first raised in 1963. Feed efficiency is typically calculated as a function of liveweight gain (LWG) and feed intake (FI). Historically two versions of the same model were proposed, one where FI was adjusted for liveweight (LW) and LWG, and the other where LWG was adjusted for FI and LW. Variation in LWG or FI could then be partitioned into two parts; that which is expected and can be attributed to differences in FI or LWG; and that which is the residual portion, which is the deviation from the expected value based on regression, and therefore not accounted for by differences in FI or LWG. Based on this definition, it is the residual portion which is the measure of efficiency. Both within a livestock industry and between different livestock industries there is no set model for calculating RFI. This paper evaluated four models used to calculate RFI and one model used to calculate residual LWG (RLWG) at a standard level of nutrition. They were the main model currently in use in the Australian beef cattle industry (RFIB), the original models proposed in 1963 (RFI1963; RLWG1963); a French model which included ultrasound measures of muscle and fat depth (RFIF) and the use of the Australian feeding standards to calculate predicted intake and thus RFI (RFISCA). Using feed intake, liveweight and body composition data generated from the same group of sheep (n = 52) at two ages (6 mo, 13 mo), the relative merits of each model were evaluated and compared to the other models, to determine the most appropriate model to calculate RFI for sheep. For all the models except that used to calculate RLWG, over half of the variation in FI could be explained by the model. The amount of variation in FI accounted for depended on the parameters included and the dataset, with less variation in FI explained by the specific models in the older animals. The RFIF model, which included measures of body composition, accounted for the greatest proportion of the variation in FI and as such suggests that the inclusion of body composition parameters is likely to more accurately reflect true biological efficiency.  相似文献   

8.
Residual feed intake (RFI) and feed conversion ratio (FCR) can be incorporated into a breeding program as traits to select for feed efficiency. Alternatively, the direct measures used to calculate RFI and FCR can be analyzed to determine the underlying variation in the traits that impact overall efficiency. These constituent traits can then be appropriately weighted in an index to achieve genetic gain. To investigate feed efficiency in the turkey, feed intake and weight gain were measured on male primary breeder line turkeys housed in individual feeding cages from 15 to 19 weeks of age. The FCR and RFI showed moderate heritability values of 0.16 and 0.21, respectively. Feed intake, body weight, and weight gain were also moderately heritable (0.25, 0.35, and 0.18, respectively). Weight gain was negatively correlated to feed conversion ratio and was not genetically correlated to RFI. Body weight had a small and positive genetic correlation to RFI (0.09) and FCR (0.12). Feed intake was positively genetically correlated to RFI (0.62); however, there was no genetic correlation between feed intake and FCR. These estimates of heritability and the genetic correlations can be used in the development of an index to improve feed efficiency and reduce the cost of production.  相似文献   

9.
Feed efficiency is an economically important trait in beef cattle. Net feed efficiency, measured as residual feed intake (RFI), is the difference between actual feed intake and the predicted feed intake required for maintenance and gain of the animal. SNPs that show associations with RFI may be useful quantitative trait nucleotides for marker-assisted selection. This study identified associations between SNPs underlying five RFI QTL on five bovine chromosomes (BTA2, 5, 10, 20 and 29) with measures of dry matter intake (DMI), RFI and feed conversion ratio (FCR) in beef cattle. Six SNPs were found to have effects on RFI (P < 0.05). The largest single SNP allele substitution effect for RFI was -0.25 kg/day located on BTA2. The combined effects of the SNPs found significant in this experiment explained 6.9% of the phenotypic variation of RFI. Not all the RFI SNPs showed associations with DMI and FCR even though these traits are highly correlated with RFI (r = 0.77 and r = 0.62 respectively). This shows that these SNPs may be affecting the underlying biological mechanisms of feed efficiency beyond feed intake control and weight gain efficiency. These SNPs can be used in marker-assisted selection but first it will be important to verify these effects in independent populations of cattle.  相似文献   

10.
A new method to estimate residual feed intake (RFI) was recently developed based on a multi-trait random regression model. This approach deals with the dynamic nature of the lactation, which is in contrast with classical linear approaches. However, an issue remains: pooling data across sites and years, which implies dealing with different (and sometimes unknown) diet energy contents. This will be needed for genomic evaluation. In this study, we tested whether merging two individual datasets into a larger one can lead to valuable results in comparison to analysing them on their own with the multi-trait random regression model. Three datasets were defined: the first one with 1 063 lactations, the second one with 205 lactations from a second farm and the third one combining the data of the two first datasets (1 268 lactations). The model was applied to the three datasets to estimate individual RFI as well as variance components and correlations between the four traits included in the model (fat and protein corrected milk production, BW, feed intake and body condition score), and a fixed month-year-farm effect was used to define the contemporary group. The variance components and correlations between animal effects of the four traits were very similar irrespective of the dataset used with correlations higher than 0.94 between the different datasets. The RFI estimates for animals from their single farm only were also very similar (r > 0.95) to the ones computed from the merged dataset (Dataset 3). This highlights that the contemporary group correction in the model adequately accounts for differences between the two feeding environments. The dynamic model can thus be used to produce RFI estimates from merged datasets, at least when animals are raised in similar systems. In addition, the 205 lactations from the second farm were also used to estimate the RFI with a linear approach. The RFI estimated by the two approaches were similar when the considered period was rather short (r = 0.85 for RFI for the first 84 days of lactation) but this correlation weakened as the period length grew (r = 0.77 for RFI for the first 168 days of lactation). This weakening in correlations between the two approaches when increasing the used time-period reflects that only the dynamic model permits the regression coefficients to evolve in line with the physiological changes through the lactation. The results of this study enlarge the possibilities of use for the dynamic RFI model.  相似文献   

11.
Residual feed intake (RFI), defined as the difference between observed and expected feed intake based on growth and backfat, has been used to investigate genetic variation in feed efficiency in cattle, poultry and pigs. However, little is known about the biological basis of differences in RFI in pigs. To this end, the objective of this study was to evaluate the fifth generation of a line of pigs selected for reduced RFI against a randomly selected Control line for performance, carcass and chemical carcass composition and overall efficiency. Here, emphasis was on the early grower phase. A total of 100 barrows, 50 from each line, were paired by age and weight (22.6 ± 3.9 kg) and randomly assigned to one of four feeding treatments in 11 replicates: ad libitum (Ad), 75% of Ad (Ad75), 55% of Ad (Ad55) and weight stasis (WS), which involved weekly adjustments in intake to keep body weight (BW) constant for each pig. Pigs were individually penned (group housing was used for selection) and were on treatment for 6 weeks. Initial BW did not significantly differ between the lines (P > 0.17). Under Ad feeding, the low RFI pigs consumed 8% less feed compared with Control line pigs (P < 0.06), had less carcass fat (P < 0.05), but with no significant difference in growth rate (P > 0.85). Under restricted feeding, low RFI pigs under the Ad75 treatment had a greater rate of gain while consuming the same amount of feed as Control pigs. Despite the greater gain, no significant line differences in carcass composition or carcass traits were observed. For the WS treatment, low RFI pigs had similar BW (P > 0.37) with no significant difference in feed consumption (P > 0.32). Overall, selection for reduced RFI has decreased feed intake, with limited differences in growth rate but reduced carcass fat, as seen under Ad feeding. Collectively, results indicate that the effects of selection for low RFI are evident during the early grower stage, which allows for greater savings to the producer.  相似文献   

12.
Limited knowledge of the structure and activities of the ruminal bacterial community prevents the understanding of the effect of population dynamics on functional bacterial groups and on host productivity. This study aimed to identify particular bacteria associated with host feed efficiency in steers with differing diets and residual feed intake (RFI) using culture-independent methods: PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR analysis. PCR-DGGE profiles were generated from the ruminal fluid of 55 steers fed a low-energy-density diet and then switched to a high-energy-density diet. Bacterial profile comparisons by multivariate statistical analysis showed a trend only for RFI-related clusters on the high-energy diet. When steers (n = 19) belonging to the same RFI group under both diets were used to identify specific bacterial phylotypes related to feed efficiency traits, correlations were detected between dry matter intake, average daily gain, and copy numbers of the 16S rRNA gene of Succinivibrio sp. in low-RFI (efficient) steers, whereas correlations between Robinsoniella sp. and RFI (P < 0.05) were observed for high-RFI (inefficient) animals. Eubacterium sp. differed significantly (P < 0.05) between RFI groups that were only on the high-energy diet. Our work provides a comprehensive framework to understand how particular bacterial phylotypes contribute to differences in feed efficiency and ultimately influence host productivity, which may either depend on or be independent from diet factors.  相似文献   

13.
The aim of this study was to evaluate differences in efficiency of feed utilisation between buffalo calves with low and high residual feed intake (RFI) by comparing feed intake, nutrient digestibility, growth traits and blood metabolites. Eighteen male Murrah buffalo calves (aged 4–6 months; 70 ± 1.0 kg body weight) were fed ad libitum with a total mixed ration for 120 d. Based on linear regression models involving dry matter intake (DMI), average daily gain (ADG) and mid-test metabolic body size, calves were assigned into low and high RFI groups. The RFI varied from ?0.33 to +0.28 kg DM/d with an average RFI of ?0.14 and 0.14 kg DM/d in low and high RFI calves, respectively. Calves had a mean DMI of 1.9 and 2.4 kg/d and an ADG of 0.5 and 0.6 kg/d in low and high RFI groups, respectively. Low RFI calves ate 19.0% less DM each day and required significantly less metabolisable energy for maintenance compared with high RFI calves (12.5 vs. 16.7 MJ/d). Nutrient digestibility and nitrogen balance did not differ among low and high RFI calves. In more efficient animals (low RFI calves) higher (p < 0.05) plasma level of growth hormone, insulin-like growth factor-1 (IGF-1), triiodothyronine (T3) and lower concentration of thyroxin hormone were detected. No significant differences in levels of insulin, hydroxyproline, plasma and urine creatinine, total protein and albumin between high and low RFI groups were found. Blood metabolites showed significant (< 0.05) differences at initial and final stages of study in both groups. At final stage of study, RFI showed negative correlations with growth hormone, IGF-1, T3, urine creatinine and albumin. Low RFI buffalo calves are more efficient in feed utilisation and the differences in blood metabolites are probably due to differences in feed intake and body metabolism.  相似文献   

14.
This review summarizes the results from the INRA (Institut National de la Recherche Agronomique) divergent selection experiment on residual feed intake (RFI) in growing Large White pigs during nine generations of selection. It discusses the remaining challenges and perspectives for the improvement of feed efficiency in growing pigs. The impacts on growing pigs raised under standard conditions and in alternative situations such as heat stress, inflammatory challenges or lactation have been studied. After nine generations of selection, the divergent selection for RFI led to highly significant (P<0.001) line differences for RFI (−165 g/day in the low RFI (LRFI) line compared with high RFI line) and daily feed intake (−270 g/day). Low responses were observed on growth rate (−12.8 g/day, P<0.05) and body composition (+0.9 mm backfat thickness, P=0.57; −2.64% lean meat content, P<0.001) with a marked response on feed conversion ratio (−0.32 kg feed/kg gain, P<0.001). Reduced ultimate pH and increased lightness of the meat (P<0.001) were observed in LRFI pigs with minor impact on the sensory quality of the meat. These changes in meat quality were associated with changes of the muscular energy metabolism. Reduced maintenance energy requirements (−10% after five generations of selection) and activity (−21% of time standing after six generations of selection) of LRFI pigs greatly contributed to the gain in energy efficiency. However, the impact of selection for RFI on the protein metabolism of the pig remains unclear. Digestibility of energy and nutrients was not affected by selection, neither for pigs fed conventional diets nor for pigs fed high-fibre diets. A significant improvement of digestive efficiency could likely be achieved by selecting pigs on fibre diets. No convincing genetic or blood biomarker has been identified for explaining the differences in RFI, suggesting that pigs have various ways to achieve an efficient use of feed. No deleterious impact of the selection on the sow reproduction performance was observed. The resource allocation theory states that low RFI may reduce the ability to cope with stressors, via the reduction of a buffer compartment dedicated to responses to stress. None of the experiments focussed on the response of pigs to stress or challenges could confirm this theory. Understanding the relationships between RFI and responses to stress and energy demanding processes, as such immunity and lactation, remains a major challenge for a better understanding of the underlying biological mechanisms of the trait and to reconcile the experimental results with the resource allocation theory.  相似文献   

15.
In the mink industry, feed costs are the largest variable expense and breeding for feed efficient animals is warranted. Implementation of selection for feed efficiency must consider the relationships between feed efficiency and the current selection traits BW and litter size. Often, feed intake (FI) is recorded on a cage with a male and a female and there is sexual dimorphism that needs to be accounted for. Study aims were to (1) model group recorded FI accounting for sexual dimorphism, (2) derive genetic residual feed intake (RFI) as a measure of feed efficiency, (3) examine the relationship between feed efficiency and BW in males (BWM) and females (BWF) and litter size at day 21 after whelping (LS21) in Danish brown mink and (4) investigate direct and correlated response to selection on each trait of interest. Feed intake records from 9574 cages, BW records on 16 782 males and 16 875 females and LS21 records on 6446 yearling females were used for analysis. Genetic parameters for FI, BWM, BWF and LS21 were obtained using a multivariate animal model, yielding sex-specific additive genetic variances for FI and BW to account for sexual dimorphism. The analysis was performed in a Bayesian setting using Gibbs sampling, and genetic RFI was obtained from the conditional distribution of FI given BW using genetic regression coefficients. Responses to single trait selection were defined as the posterior distribution of genetic superiority of the top 10% of animals after conditioning on the genetic trends. The heritabilities ranged from 0.13 for RFI in females and LS21 to 0.59 for BWF. Genetic correlations between BW in both sexes and LS21 and FI in both sexes were unfavorable, and single trait selection on BW in either sex showed increased FI in both sexes and reduced litter size. Due to the definition of RFI and high genetic correlation between BWM and BWF, selection on RFI did not significantly alter BW. In addition, selection on RFI in either sex did not affect LS21. Genetic correlation between sexes for FI and BW was high but significantly lower than unity. The high correlations across sex allowed for selection on standardized averages of animals’ breeding values (BVs) for RFI, FI and BW, which yielded selection responses approximately equal to the responses obtained using the sex-specific BVs. The results illustrate the possibility of selecting against RFI in mink with no negative effects on BW and litter size.  相似文献   

16.
The difficulties and costs of measuring individual feed intake in dairy cattle are the primary factors limiting the genetic study of feed intake and utilisation, and hence the potential of their subsequent industry-wide applications. However, indirect selection based on heritable, easily measurable, and genetically correlated traits, such as conformation traits, may be an alternative approach to improve feed efficiency. The aim of this study was to estimate genetic and phenotypic correlations among feed intake, production, and feed efficiency traits (particularly residual feed intake; RFI) with routinely recorded conformation traits. A total of 496 repeated records from 260 Holstein dairy cows in different lactations (260, 159 and 77 from first, second and third lactation, respectively) were considered in this study. Individual daily feed intake and monthly BW and body condition scores of these animals were recorded from 5 to 305 days in milk within each lactation from June 2007 to July 2013. Milk yield and composition data of all animals within each lactation were retrieved, and the first lactation conformation traits for primiparous animals were extracted from databases. Individual RFI over 301 days was estimated using linear regression of total 301 days actual energy intake on a total of 301 days estimated traits of metabolic BW, milk production energy requirement, and empty BW change. Pair-wise bivariate animal models were used to estimate genetic and phenotypic parameters among the studied traits. Estimated heritabilities of total intake and production traits ranged from 0.27±0.07 for lactation actual energy intake to 0.45±0.08 for average body condition score over 301 days of the lactation period. RFI showed a moderate heritability estimate (0.20±0.03) and non-significant phenotypic and genetic correlations with lactation 3.5 % fat-corrected milk and average BW over lactation. Among the conformation traits, dairy strength, stature, rear attachment width, chest width and pin width had significant (P<0.05) moderate to strong genetic correlations with RFI. Combinations of these conformation traits could be used as RFI indicators in the dairy genetic improvement programmes to increase the accuracy of the genetic evaluation of feed intake and utilisation included in the index.  相似文献   

17.
Growth rate is a major component of feed efficiency when estimating residual feed intake (RFI). Quantile regression (QR) methodology can be used to identify animals with different growth trajectories. The objective of this study was to evaluate the use of QR to identify phenotypic and genetic differences in pigs selected for low RFI. Using performance data on 750 Yorkshire pigs selected for low RFI, individual average daily gain (ADG), average daily feed intake (ADFI), RFI and Gompertz growth curve parameters (asymptotic weight (a), inflection point (b) and decay parameter (c)) were estimated for each pig. Using QR methodology, three Gompertz growth curves were estimated for the whole population for three quantiles (0.1, 0.5 and 0.9) of the BW data. Each animal was classified into one of the quantile regression groups (QRG) based on their overall Euclidian distance between each observed and estimated BW from the quantile growth curves. These three curves were also estimated using only part of the data (generations −1 to 3, and −1 to 4) in order to evaluate the agreement classification rate of animals from later generations into QRGs. We evaluated the effect of QRG on growth parameters and performance traits. Genetic parameters were estimated for these traits, as well as for QRG. In addition, genetic trends for each QRG were estimated. Three distinct growth curves were observed for animals classified into either quantiles 0.1 (QRG0.1), 0.5 (QRG0.5) or 0.9 (QRG0.9). When only part of the data was used to estimate quantile growth curves, all animals from QRG0.1 were correctly classified in their group. Animals in QRG0.1 had significantly lower ADFI, ADG and RFI, and greater a, b and c than animals in the other groups. Quantile regression groups analysed as a trait was highly heritable (0.41) and had high (0.8) and moderate (0.46) genetic correlations with ADG and RFI, respectively. Selection for reduced RFI increased the number of animals classified as QRG0.1 in the population. Overall, downward genetic trends were observed for all traits as a function of selection for reduced RFI. However, QRG0.1 was the only group that had a positive genetic trend for ADG. Altogether, these results indicate that selection for reduced RFI changes the shape of growth curves in Yorkshire in pigs, and that QR methodology was able to identify animals having different genetic potential for feed efficiency, bringing a new opportunity to improve selection for reduced RFI.  相似文献   

18.
Residual feed intake (RFI) is now considered a more reasonable metric to evaluate animal feed efficiency. In this study, the correlation between RFI and other feed efficiency traits was investigated and gene expression within the hypothalamus was determined in low RFI (LRFI) and high RFI (HRFI) ducks. Further, several hypothalamic neuropeptide genes were measured using quantitative real‐time PCR. The mean feed intake value was 160 g/day, whereas the egg mass laid (EML) and body weight were approximately 62.4 g/day and 1.46 kg respectively. Estimates for heritability of RFI, feed conversion ratio (FCR) and feed intake were 0.26, 0.18 and 0.23 respectively. RFI is phenotypically positively correlated with feed intake and FCR (< 0.01). The expression of neuropeptide Y (NPY) and neuropeptide Y receptor Y5 (NPY5R) mRNA was higher in HRFI ducks compared with LRFI ducks (< 0.05), whereas that of proopiomelanocortin (POMC), melanocortin 4 receptor (MC4R) and cholecystokinin (CCK) was lower (< 0.05). The mRNA expression of gonadotropin‐releasing hormone 1 (luteinizing‐releasing hormone) (GNRH1) and prolactin receptor (PRLR) was unchanged between LRFI and HRFI ducks. The results indicate that selection for LRFI could reduce feed intake without significant changes in EML, whereas selection on FCR will increase EML.  相似文献   

19.
Feeding costs represent one of the highest expenditures in animal production systems. Breeding efficient animals that express their growth potential while eating less is therefore a major objective for breeders. We estimated the genetic parameters for feed intake, feed efficiency traits (residual feed intake (RFI) and feed conversion ratio (FCR)), growth and body composition traits in the Romane meat sheep breed. In these traits, selection responses to single-generation divergent selection on RFI were evaluated. From 2009 to 2016, a total of 951 male lambs were tested for 8 weeks starting from 3 months of age. They were weighed at the beginning and at the end of the testing period. Backfat thickness and muscle depth were recorded at the end of the testing period through ultrasound measurements. Feed intake was continuously recorded over the testing period using the automatic concentrate feeders. The heritability of RFI was estimated at 0.45 ± 0.08, which was higher than the heritability of FCR (0.30 ± 0.08). No significant genetic correlations were observed between RFI and growth traits. A favourable low negative genetic correlation was estimated between RFI and muscle depth (−0.30 ± 0.15), though additional data are needed to confirm these results. The selection of low RFI sires based on their breeding values led to the production of lambs eating significantly less concentrate (3% decrease in the average daily feed intake), but with the same growth as lambs from sires selected based on high RFI breeding values. We concluded that in meat sheep, RFI is a heritable trait that is genetically independent of post-weaning growth and body composition traits. A one-generation divergent selection based on RFI breeding values highlighted that substantial gains in feeding costs can be expected in selection schemes for meat sheep breeds.  相似文献   

20.
Feed is a major component of variable costs associated with dairy systems and is therefore an important consideration for breeding objectives. As a result, measures of feed efficiency are becoming popular traits for genetic analyses. Already, several countries account for feed efficiency in their breeding objectives by approximating the amount of energy required for milk production, maintenance, etc. However, variation in actual feed intake is currently not captured in dairy selection objectives, although this could be possible by evaluating traits such as residual feed intake (RFI), defined as the difference between actual and predicted feed (or energy) intake. As feed intake is expensive to accurately measure on large numbers of cows, phenotypes derived from it are obvious candidates for genomic selection provided that: (1) the trait is heritable; (2) the reliability of genomic predictions are acceptable to those using the breeding values; and (3) if breeding values are estimated for heifers, rather than cows then the heifer and cow traits need to be correlated. The accuracy of genomic prediction of dry matter intake (DMI) and RFI has been estimated to be around 0.4 in beef and dairy cattle studies. There are opportunities to increase the accuracy of prediction, for example, pooling data from three research herds (in Australia and Europe) has been shown to increase the accuracy of genomic prediction of DMI from 0.33 within country to 0.35 using a three-country reference population. Before including RFI as a selection objective, genetic correlations with other traits need to be estimated. Weak unfavourable genetic correlations between RFI and fertility have been published. This could be because RFI is mathematically similar to the calculation of energy balance and failure to account for mobilisation of body reserves correctly may result in selection for a trait that is similar to selecting for reduced (or negative) energy balance. So, if RFI is to become a selection objective, then including it in an overall multi-trait selection index where the breeding objective is net profit is sensible, as this would allow genetic correlations with other traits to be properly accounted for. If genetic parameters are accurately estimated then RFI is a logical breeding objective. If there is uncertainty in these, then DMI may be preferable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号