首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The genetic study of rats and mice using natural variants, natural mutations, chemical or radiation induced mutations, engineered mutations and conditional engineered mutations has provided the tools for investigating the genetics of disease. The completion of the mouse genomic sequence and progress towards sequencing the rat genome in the past year will enable the molecular identification of quantitative trait loci and induced mutations. Sequence-based single nucleotide polymorphism discovery and a greater understanding of the haplotype structure of inbred strains is revitalising quantitative trait locus mapping and there are now plans for an ambitious eight-way recombinant inbred cross and renewed interest in existing resources such as heterogeneous stocks. In the past year there have been refinements to ENU mutagenesis approaches including balancer chromosomes and a new gene-driven approach.  相似文献   

2.
Taking stock of complex trait genetics in mice   总被引:11,自引:0,他引:11  
The mapping of complex trait loci in mice has recently become very popular thanksto dense genetic maps, better approaches to linkage analysis and the continued value of the mouse as a key model organism for human disease. Neverthelless, the ultimate goal remains very difficult: to identify genes that underlie complex traits and to understand their function at a molecular level. In assessing the prospects of current efforts, it helps to review the findings of earlier studies of complex traits and, despite all the technology, to be reminded of the inherent benefits and limitations at the source of genetic variation: the laboratory mouse. With the right perspective it should be possible for geneticists analysing complex triats to take full advantage of the resources that the genome project will provide.  相似文献   

3.
The color of mice: in the light of GFP-variant reporters   总被引:7,自引:0,他引:7  
The mouse currently represents the premier model organism for mammalian genetic studies. Over the past decade the production of targeted and transgenic lines of mice has become commonplace, with current technology allowing the creation of mutations at base pair resolution. Such genome modifications are becoming increasingly elaborate and often incorporate gene-based reporters for tagging different cellular populations. Until recently, lacZ, the bacterial beta-galactosidase gene has been the marker of choice for most studies in the mouse. However, over the past 3 years another valuable reporter has emerged, and its attractiveness is reflected by an explosion in its use in mice. Green fluorescent protein (GFP), a novel autofluorescent genetic reporter derived from the bioluminescent jellyfish Aequorea victoria, currently represents a unique alternative to other gene-based reporters in that its visualization is non-invasive and so can be monitored in real-time in vitro or in vivo. It has the added advantage that it can be quantified by, for example, flow cytometry, confocal microscopy, and fluorometric assays. Several mutants of the original wild-type GFP gene that improve thermostability and fluorescence have been engineered. Enhanced GFP is one such variant, which has gained popularity for use in transgenic or targeted mice. Moreover, various GFP spectral variants have also been developed, and two of these novel color variants, enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP), can also be used in mice. Since the spectral profiles of the ECFP and EYFP color variants are distinct and non-overlapping, these two reporters can be co-visualized, and are therefore ideal for in vivo double-labeling or fluorescent energy transfer analyses. The use of GFP and its color variants as reporters provides an unprecedented level of sophistication and represents the next step in mouse genome engineering technology by opening up the possibility of combinatorial non-invasive reporter usage within a single animal.  相似文献   

4.
As an important opportunistic pulmonary pathogen, Pneumocystis carinii has been the focus of extensive research over the decades. The use of laboratory animal models has permitted a detailed understanding of the host-parasite interaction but an understanding of the basic biology of P. carinii has lagged due in large part to the inability of the organism to grow well in culture and to the lack of a tractable genetic system. Molecular techniques have demonstrated extensive heterogeneity among P. carinii organisms isolated from different host species. Characterization of the genes and genomes of the Pneumocystis family has supported the notion that the family comprises different species rather than strains within the genus Pneumocystis and contributed to the understanding of the pathophysiology of infection. Many of the technical obstacles in the study of the organisms have been overcome in the past decade and the pace of research into the basic biology of the organism has accelerated. Biochemical pathways have been inferred from the presence of key enzyme activities or gene sequences, and attempts to dissect cellular pathways have been initiated. The Pneumocystis genome project promises to be a rich source of information with regard to the functional activity of the organism and the presence of specific biochemical pathways. These advances in our understanding of the biology of this organism should provide for future studies leading to the control of this opportunistic pathogen.  相似文献   

5.
Mice with alterations to specific endogenous genes can be produced by gene targeting in embryonic stem cells. The field has developed rapidly over the past decade, so that large numbers of mice with different gene deficiencies have been generated. Knockout mice provide an ideal opportunity to analyse the function of individual mammalian genes and to model a range of human inherited disorders. This powerful approach has also identified numerous examples of gene redundancy and has highlighted the need to consider metabolic differences between man and mouse in disease modelling. More sophisticated gene-targeting methods are now being used to introduce subtle gene alterations. In the future, more refined genetic analysis and genome, rather than individual gene, alterations will be achieved by incorporating site-specific recombination into targeting strategies. Gene targeting could also make a contribution to improved protocols for gene therapy.  相似文献   

6.
7.
The mouse is the premier genetic model organism for the study of human disease and development. With the recent advances in sequencing of the human and mouse genomes, there is strong interest now in large-scale approaches to decipher the function of mouse genes using various mutagenesis technologies. This review discusses what tools are currently available for manipulating and mutagenizing the mouse genome, such as ethylnitrosourea and gene trap mutagenesis, engineered inversions and deletions using the cre-lox system, and proviral insertional mutagenesis in somatic cells, and how these are being used to uncover gene function. Electronic Publication  相似文献   

8.
Although inbred mouse strains have been the premier model organism used in biomedical research, multiple studies and analyses have indicated that genome-wide association studies (GWAS) cannot be productively performed using inbred mouse strains. However, there is one type of GWAS in mice that has successfully identified the genetic basis for many biomedical traits of interest: haplotype-based computational genetic mapping (HBCGM). Here, we describe how the methodological basis for a HBCGM study significantly differs from that of a conventional murine GWAS, and how an integrative analysis of its output within the context of other 'omic' information can enable genetic discovery. Consideration of these factors will substantially improve the prognosis for the utility of murine genetic association studies for biomedical discovery.  相似文献   

9.
Technological innovations in methods for genetic manipulation of laboratory animals and in techniques for assessment of cardiovascular, respiratory, behavioral, and metabolic physiology in mouse models afford unprecedented opportunities for research in integrative biology. We provide here an overview of basic and advanced techniques for generation of transgenic mice and a discussion of how transgenic technology can be most advantageously applied to important physiological questions that can be addressed only within the intact organism.  相似文献   

10.
The mouse is the most extensively used mammalian model for biomedical and aging research, and an extensive catalogue of laboratory resources is available to support research using mice: classical inbred lines, genetically modified mice (knockouts, transgenics, and humanized mice), selectively bred lines, consomics, congenics, recombinant inbred panels, outbred and heterogeneous stocks, and an expanding set of wild-derived strains. However, these resources were not designed or intended to model the heterogeneous human population or for a systematic analysis of phenotypic effects due to random combinations of uniformly distributed natural variants. The Collaborative Cross (CC) is a large panel of recently established multiparental recombinant inbred mouse lines specifically designed to overcome the limitations of existing mouse genetic resources for analysis of phenotypes caused by combinatorial allele effects. The CC models the complexity of the human genome and supports analyses of common human diseases with complex etiologies originating through interactions between allele combinations and the environment. The CC is the only mammalian resource that has high and uniform genomewide genetic variation effectively randomized across a large, heterogeneous, and infinitely reproducible population. The CC supports data integration across environmental and biological perturbations and across space (different labs) and time.  相似文献   

11.
The rate at which mutant genes producing an epileptic phenotype in mice have been identified over the past few years has been astounding. Manipulating the genome of mice has led to identification of a diversity of genes whose absence or modification either causes epileptic seizures or, conversely, limits epileptogenesis. In addition, positional cloning of genes in which spontaneously arising mutations cause epilepsy in mice has led to the identification of genes encoding voltage- and ligand-gated ion channels. Finally, engineering a mutation that mimics a rare form of human epilepsy has led to a mouse line with a phenotype similar to that of the human disease. Taken together, these discoveries promise to shed light on the mechanisms underlying genetic control of neuronal excitability, suggest candidate genes underlying genetic forms of human epilepsy, and provide a valuable model with which to elucidate how the genotype produces the phenotype of a rare form of human epilepsy.  相似文献   

12.
The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite‐free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high‐quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.  相似文献   

13.
After sequencing the human and mouse genomes, the annotation of these sequences with biological functions is an important challenge in genomic research. A major tool to analyse gene function on the organismal level is the analysis of mutant phenotypes. Because of its genetic and physiological similarity to man, the mouse has become the model organism of choice for the study of genetic diseases. In addition, there is at the moment no other vertebrate for which versatile techniques to manipulate the genome are as well developed. Several mouse mutagenesis projects have provided the proof-of-principle that a systematic and comprehensive mutagenesis of every gene in the mammalian genome will be feasible. An exhaustive functional annotation of the mammalian genome can only be achieved in a combination of phenotype- and gene-driven approaches in large- and small-scale academic and private projects. Major challenges will be to develop standardised phenotyping protocols for the clinical and pathological characterisation of mouse mutants, the improvement of mutation detection methods and the dissemination of resources and data. Beyond gene annotation, it will be necessary to understand how gene functions are integrated into the complex network of regulatory interactions in the cell.  相似文献   

14.
It has taken about 100 years since the mouse first captured our imagination as an intriguing animal for it to become the premier genetic model organism. An expanding repertoire of genetic technology, together with sequencing of the genome and biological conservation, place the mouse at the foremost position as a model to decipher mechanisms underlying biological and disease processes. The combined approaches of embryonic stem cell-based technologies, chemical and insertional mutagenesis have enabled the systematic interrogation of the mouse genome with the aim of creating, for the first time, a library of mutants in which every gene is disrupted. The hope is that phenotyping the mutants will reveal novel and interesting phenotypes that correlate with genes, to define the first functional map of a mammalian genome. This new milestone will have a great impact on our understanding of mammalian biology, and could significantly change the future of medical diagnosis and therapeutic development, where databases can be queried in silico for potential drug targets or underlying genetic causes of illnesses. Emerging innovative genetic strategies, such as somatic genetics, modifier screens and humanized mice, in combination with whole-genome mutagenesis will dramatically broaden the utility of the mouse. More significantly, allowing genome-wide genetic interrogations in the laboratory, will liberate the creativity of individual investigators and transform the mouse as a model for making original discoveries and establishing novel paradigms for understanding human biology and disease.  相似文献   

15.
Complete mapping of the genome in a number of organisms provides a challenge for experimental nephrologists to identify potential functions of a vast number of new genes in the kidney. Since knockout technologies have evolved in the early eighties the mouse has become a valuable model organism. Researchers can now artificially eliminate the expression of specific genes in a mammalian organism and examine the phenotype. New developments have emerged that allow investigators to knock out a gene specifically in the kidney. Several kidney-specific promoters provide valuable tools and bacterial artificial chromosome (BAC) based techniques like recombineering will enhance both number and accuracy of new mouse lines with spatially controlled gene expression. In addition to spatial control, tetracycline- or tamoxifen-inducible systems, provide the possibility of influencing the temporal expression pattern of a gene enabling researchers to dissect its functions in adult organisms. Knocking out a gene will continue to be the gold standard for defining the role of a specific gene whereas tissue-specific gene knockdown using RNA interference represents an alternative approach for generating lower-priced and fast loss of function models. In addition to reverse genetic approaches, forward genetic techniques like random mutagenesis in mice continue to evolve and will enhance our understanding of disease mechanisms in the kidney.  相似文献   

16.
Mouse phenome research: implications of genetic background   总被引:4,自引:0,他引:4  
Now that sequencing of the mouse genome has been completed, the function of each gene remains to be elucidated through phenotypic analysis. The "genetic background" (in which each gene functions) is defined as the genotype of all other related genes that may interact with the gene of interest, and therefore potentially influences the specific phenotype. To understand the nature and importance of genetic background on phenotypic expression of specific genes, it is necessary to know the origin and evolutionary history of the laboratory mouse genome. Molecular analysis has indicated that the fancy mice of Japan and Europe contributed significantly to the origin of today's laboratory mice. The genetic background of present-day laboratory mice varies by mouse strain, but is mainly derived from the European domesticus subspecies group and to a lesser degree from Asian mice, probably Japanese fancy mice, which belong to the musculus subspecies group. Inbred laboratory mouse strains are genetically uniform due to extensive inbreeding, and they have greatly contributed to the genetic analysis of many Mendelian traits. Meanwhile, for a variety of practical reasons, many transgenic and targeted mutant mice have been created in mice of mixed genetic backgrounds to elucidate the function of the genes, although efforts have been made to create inbred transgenic mice and targeted mutant mice with coisogenic embryonic stem cell lines. Inbred mouse strains have provided uniform genetic background for accurate evaluation of specific genes phenotypes, thus eliminating the phenotypic variations caused by mixed genetic backgrounds. However, the process of inbreeding and selection of various inbred strain characteristics has resulted in inadvertent selection of other undesirable genetic characteristics and mutations that may influence the genotype and preclude effective phenotypic analysis. Because many of the common inbred mouse stains have been established from relatively small gene pools, common inbred strains have limitations in their genetic polymorphisms and phenotypic variations. Wild-derived mouse strains can complement deficiencies of common inbred mouse strains, providing novel allelic variants and phenotypes. Although wild-derived strains are not as tame as the common laboratory strains, their genetic characteristics are attractive for the future study of gene function.  相似文献   

17.
The Mouse Genome Database (MGD) is the community database resource for the laboratory mouse, a key model organism for interpreting the human genome and for understanding human biology and disease (http://www.informatics.jax.org). MGD provides standard nomenclature and consensus map positions for mouse genes and genetic markers; it provides a curated set of mammalian homology records, user-defined chromosomal maps, experimental data sets and the definitive mouse 'gene to sequence' reference set for the research community. The integration and standardization of these data sets facilitates the transition between mouse DNA sequence, gene and phenotype annotations. A recent focus on allele and phenotype representations enhances the ability of MGD to organize and present data for exploring the relationship between genotype and phenotype. This link between the genome and the biology of the mouse is especially important as phenotype information grows from large mutagenesis projects and genotype information grows from large-scale sequencing projects.  相似文献   

18.
The genome sequence of the free-living nematode Caenorhabditis elegans is nearly complete, with resolution of the final difficult regions expected over the next few months. This will represent the first genome of a multicellular organism to be sequenced to completion. The genome is approximately 97 Mb in total, and encodes more than 19,099 proteins, considerably more than expected before sequencing began. The sequencing project--a collaboration between the Genome Sequencing Center in St Louis and the Sanger Centre in Hinxton--has lasted eight years, with the majority of the sequence generated in the past four years. Analysis of the genome sequence is just beginning and represents an effort that will undoubtedly last more than another decade. However, some interesting findings are already apparent, indicating that the scope of the project, the approach taken, and the usefulness of having the genetic blueprint for this small organism have been well worth the effort.  相似文献   

19.
Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.  相似文献   

20.
The eukaryotic cell nucleus displays a high degree of spatial organization, with discrete functional subcompartments that provide microenvironments where specialized processes take place. Concordantly, the genome also adopts defined conformations that, in part, enable specific genomic regions to interface with these functional centers. Yet the roles of many subcompartments and the genomic regions that contact them have not been explored fully. More fundamentally, it is not entirely clear how genome organization impacts function, and vice versa. The past decade has witnessed the development of a new breed of methods that are capable of assessing the spatial organization of the genome. These stand to further our understanding of the relationship between genome structure and function, and potentially assign function to various nuclear subcompartments. Here, we review the principal techniques used for analyzing genomic interactions, the functional insights they have afforded and discuss the outlook for future advances in nuclear structure and function dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号