首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our laboratory demonstrated that a natural human serum antibody, sHIgM12, binds to neurons in vitro and promotes neurite outgrowth. We generated a recombinant form, rHIgM12, with identical properties. Intracerebral infection with Theiler's Murine Encephalomyelitis Virus (TMEV) of susceptible mouse strains results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis. To study the effects of rHIgM12 on the motor function of TMEV-infected mice, we monitored spontaneous nocturnal activity over many weeks. Nocturnal behavior is a sensitive measure of rodent neurologic function because maximal activity changes are expected to occur during the normally active night time monitoring period. Mice were placed in activity boxes eight days prior to treatment to collect baseline spontaneous activity. After treatment, activity in each group was continuously recorded over 8 weeks. We chose a long 8-week monitoring period for two reasons: (1) we previously demonstrated that IgM induced remyelination is present by 5 weeks post treatment, and (2) TMEV-induced demyelinating disease in this strain progresses very slowly. Due to the long observation periods and large data sets, differences among treatment groups may be difficult to appreciate studying the original unfiltered recordings. To clearly delineate changes in the highly fluctuating original data we applied three different methods: (1) binning, (2) application of Gaussian low-pass filters (GF) and (3) polynomial fitting. Using each of the three methods we showed that compared to control IgM and saline, early treatment with rHIgM12 induced improvement in both horizontal and vertical motor function, whereas later treatment improved only horizontal activity. rHIgM12 did not alter activity of normal, uninfected mice. This study supports the hypothesis that treatment with a neuron-binding IgM not only protects neurons in vitro, but also influences functional motor improvement.  相似文献   

2.
The netrin-1 receptor Deleted in Colorectal Cancer (DCC) is required for the formation of major axonal projections by embryonic cortical neurons, including the corpus callosum, hippocampal commissure, and cortico-thalamic tracts. The presentation of DCC by axonal growth cones is tightly regulated, but the mechanisms regulating DCC trafficking within neurons are not well understood. Here, we investigated the mechanisms regulating DCC recruitment to the plasma membrane of embryonic cortical neurons. In embryonic spinal commissural neurons, protein kinase A (PKA) activation recruits DCC to the plasma membrane and enhances axon chemoattraction to netrin-1. We demonstrate that PKA activation similarly recruits DCC and increases embryonic cortical neuron axon extension, which, like spinal commissural neurons, respond to netrin-1 as a chemoattractant. We then determined if depolarization might recruit DCC to the plasma membrane. Neither netrin-1 induced axon extension, nor levels of plasma membrane DCC, were altered by depolarizing embryonic spinal commissural neurons with elevated levels of KCl. In contrast, depolarizing embryonic cortical neurons increased the amount of plasma membrane DCC, including at the growth cone, and increased axon outgrowth evoked by netrin-1. Inhibition of PKA, phosphatidylinositol-3-kinase, protein kinase C, or exocytosis blocked the depolarization-induced recruitment of DCC and suppressed axon outgrowth. Inhibiting protein synthesis did not affect DCC recruitment, nor were the distributions of trkB or neural cell adhesion molecule (NCAM) influenced by depolarization, consistent with selective mobilization of DCC. These findings identify a role for membrane depolarization modulating the response of axons to netrin-1 by regulating DCC recruitment to the plasma membrane.  相似文献   

3.
Zhang C  Li D  Ma Y  Yan J  Yang B  Li P  Yu A  Lu C  Ma X 《Journal of cellular biochemistry》2012,113(7):2296-2307
Hereditary spastic paraplegia (HSP) is a neurodegenerative disorder characterized by retrograde axonal degeneration that primarily affects long spinal neurons. The gene encoding spastin has a well-established association with HSP, and protrudin is a known binding partner of spastin. Here, we demonstrate that the N-terminal domain of protrudin mediates the interaction with spastin, which is responsible for neurite outgrowth. We show that spastin promotes protrudin-dependent neurite outgrowth in PC12 cells. To further confirm these physiological functions in vivo, we microinjected zebrafish embryos with various protrudin/spastin mRNA and morpholinos. The results suggest that the spinal cord motor neuron axon outgrowth of zebrafish is regulated by the interaction between spastin and protrudin. In addition, the putative HSP-associated protrudinG191V mutation was shown to alter the subcellular distribution and impair the yolk sac extension of zebrafish, but without significant defects in neurite outgrowth both in PC12 cells and zebrafish. Taken together, our findings indicate that protrudin interacts with spastin and induces axon formation through its N-terminal domain. Moreover, protrudin and spastin may work together to play an indispensable role in motor axon outgrowth.  相似文献   

4.
Regulation of microtubule dynamics underlies many fundamental cellular mechanisms including cell division, cell motility, and transport. In neurons, microtubules play key roles in cell migration, axon outgrowth, control of axon and synapse growth, and the regulated transport of vesicles and structural components of synapses. Loss of synapse and axon integrity and disruption of axon transport characterize many neurodegenerative diseases. Recently, mutations that specifically alter the assembly or stability of microtubules have been found to directly cause neurodevelopmental defects or neurodegeneration in vertebrates. We report here the characterization of a missense mutation in the C-terminal domain of C. elegans alpha-tubulin, tba-1(ju89), that disrupts motor neuron synapse and axon development. Mutant ju89 animals exhibit reduction in the number and size of neuromuscular synapses, altered locomotion, and defects in axon extension. Although null mutations of tba-1 show a nearly wild-type pattern, similar axon outgrowth defects were observed in animals lacking the beta-tubulin TBB-2. Genetic analysis reveals that tba-1(ju89) affects synapse development independent of its role in axon outgrowth. tba-1(ju89) is an altered function allele that most likely perturbs interactions between TBA-1 and specific microtubule-associated proteins that control microtubule dynamics and transport of components needed for synapse and axon growth.  相似文献   

5.
Because microtubules perform many essential functions in neurons, delineating unique roles attributable to these organelles presents a formidable challenge. Microtubules endow neurons with shape and structure and are required for developmental processes including neurite outgrowth [1], intracellular transport [2], and synapse formation and plasticity [3] and [4]; microtubules in sensory neurons may be required for the above processes in addition to a specific sensory function. In Caenorhabditis elegans, six touch receptor neurons (TRNs) sense gentle touch [5] and uniquely contain 15-protofilament microtubules [6]. Disruption of these microtubules by loss of either the MEC-7 β-tubulin [7] or MEC-12 α-tubulin [8] or by growth in 1 mM colchicine causes touch insensitivity [5] and [6], altered distribution of the touch transduction channel, and a general reduction in protein levels. We show that the effect on touch sensitivity can be separated from the others; microtubule depolymerization in mature TRNs causes touch insensitivity but does not result in protein distribution and production defects. In addition, the mec-12(e1605) mutation selectively causes touch insensitivity without affecting microtubule formation and other cellular processes. Touching e1605 animals produces a reduced mechanoreceptor current that inactivates more rapidly than in wild-type, suggesting a specific role of the microtubules in mechanotransduction.  相似文献   

6.
Zebrafish (Danio rerio) is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr−1 s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day−1 growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF)-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca2+-imaging revealed local elevation of cytoplasmic Ca2+ concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca2+ signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development, chemotropic axon guidance, and mechanisms underlying inhibition of neural regeneration in vitro, and complement observations made in vivo.  相似文献   

7.
The activation state of Rho is an important determinant of axon growth and regeneration in neurons. Axons can extend neurites on growth inhibitory substrates when Rho is inactivated by C3-ADP-ribosyltransferase (C3). We found by Rho-GTP pull-down assay that inhibitory substrates activate Rho. To inactivate Rho, scrape-loading of C3 was necessary because it does not freely enter cells. To overcome the poor permeability of C3, we made and characterized five new recombinant C3-like chimeric proteins designed to cross the cell membrane by receptor-independent mechanisms. These proteins were constructed by the addition of short transport peptides to the carboxyl-terminal of C3 and tested using a bioassay measuring neurite outgrowth of PC-12 cells plated on growth inhibitory substrates. All five constructs stimulated neurite outgrowth but with different dose-response profiles. Biochemical properties of the chimeric proteins were examined using C3-05, the most effective construct tested. Gel shift assays showed that C3-05 retained the ability to ADP-ribosylate Rho. Western blots and immunocytochemistry were used to verify the presence of C3 inside treated cells. C3-05 was also effective at promoting neurite outgrowth in primary neuronal cultures, as well as causing the disassembly of actin stress fibers and focal adhesions complexes in fibroblasts. These studies demonstrate that the new C3-like proteins are effective in delivering biologically active C3 into different cell types, thereby, inactivating Rho.  相似文献   

8.
Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75(NTR) collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75(NTR) both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75(NTR). When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75(NTR), was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75(NTR) partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance.  相似文献   

9.

Background

Promotion of remyelination is a major goal in treating demyelinating diseases such as multiple sclerosis (MS). The recombinant human monoclonal IgM, rHIgM22, targets myelin and oligodendrocytes (OLs) and promotes remyelination in animal models of MS. It is unclear whether rHIgM22-mediated stimulation of lesion repair is due to promotion of oligodendrocyte progenitor cell (OPC) proliferation and survival, OPC differentiation into myelinating OLs or protection of mature OLs. It is also unknown whether astrocytes or microglia play a functional role in IgM-mediated lesion repair.

Methods

We assessed the effect of rHIgM22 on cell proliferation in mixed CNS glial and OPC cultures by tritiated-thymidine uptake and by double-label immunocytochemistry using the proliferation marker, Ki-67. Antibody-mediated signaling events, OPC differentiation and OPC survival were investigated and quantified by Western blots.

Results

rHIgM22 stimulates OPC proliferation in mixed glial cultures but not in purified OPCs. There is no proliferative response in astrocytes or microglia. rHIgM22 activates PDGFαR in OPCs in mixed glial cultures. Blocking PDGFR-kinase inhibits rHIgM22-mediated OPC proliferation in mixed glia. We confirm in isolated OPCs that rHIgM22-mediated anti-apoptotic signaling and inhibition of OPC differentiation requires PDGF and FGF-2. We observed no IgM-mediated effect in mature OLs in the absence of PDGF and FGF-2.

Conclusion

Stimulation of OPC proliferation by rHIgM22 depends on co-stimulatory astrocytic and/or microglial factors. We demonstrate that rHIgM22-mediated activation of PDGFαR is required for stimulation of OPC proliferation. We propose that rHIgM22 lowers the PDGF threshold required for OPC proliferation and protection, which can result in remyelination of CNS lesions.  相似文献   

10.
During embryonic development, tangentially migrating precerebellar neurons emit a leading process and then translocate their nuclei inside it (nucleokinesis). Netrin 1 (also known as netrin-1) acts as a chemoattractant factor for neurophilic migration of precerebellar neurons (PCN) both in vivo and in vitro. In the present work, we analyzed Rho GTPases that could direct axon outgrowth and/or nuclear migration. We show that the expression pattern of Rho GTPases in developing PCN is consistent with their involvement in the migration of PCN from the rhombic lips. We report that pharmacological inhibition of Rho enhances axon outgrowth of PCN and prevents nuclei migration toward a netrin 1 source, whereas inhibition of Rac and Cdc42 sub-families impair neurite outgrowth of PCN without affecting migration. We show, through pharmacological inhibition, that Rho signaling directs neurophilic migration through Rock activation. Altogether, our results indicate that Rho/Rock acts on signaling pathways favoring nuclear translocation during tangential migration of PCN. Thus, axon extension and nuclear migration of PCN in response to netrin 1 are not strictly dependent processes because: (1) distinct small GTPases are involved; (2) axon extension can occur when migration is blocked; and (3) migration can occur when axon outgrowth is impaired.  相似文献   

11.
The acquisition of neuronal type-specific morphogenesis is a central feature of neuronal differentiation and has important consequences for region-specific nervous system functions. Here, we report that the cell type-specific cholesterol profile determines the differential modulation of axon and dendrite outgrowths in hippocampal and cerebral cortical neurons in culture. The extent of axon and dendrite outgrowths is greater and the polarity formation occurs earlier in cortical neurons than in hippocampal neurons. The cholesterol concentrations in total homogenate and the lipid rafts from hippocampal neurons are significantly higher than those from cortical neurons. Cholesterol depletion by beta-cyclodextrin markedly enhanced the neurite outgrowth and accelerated the establishment of neuronal polarity in hippocampal neurons, which were similarly observed in nontreated cortical neurons, whereas cholesterol loading had no effects. In contrast, both depletion and loading of cholesterol decreased the neurite outgrowths in cortical neurons. The stimulation of neurite outgrowth and polarity formation induced by cholesterol depletion was accompanied by an enhanced localization of Fyn, a Src kinase, in the lipid rafts of hippocampal neurons. A concomitant treatment with beta-cyclodextrin and a Src family kinase inhibitor, PP2, specifically blocked axon outgrowth but not dendrite outgrowth (both of which were enhanced by beta-cyclodextrin) in hippocampal neurons, suggesting that axon outgrowth modulated by cholesterol is induced in a Fyn-dependent manner. These results suggest that cellular cholesterol modulates axon and dendrite outgrowths and neuronal polarization under culture conditions and also that the difference in cholesterol profile between hippocampal and cortical neurons underlies the difference in neurite outgrowth between these two types of neurons.  相似文献   

12.
It has recently been reported that soluble epoxide hydrolase (sEH), the major enzyme that metabolizes epoxyeicosatrienoic acids (EETs), is expressed in axons of cortical neurons; however, the functional relevance of axonal sEH localization is unknown. Immunocytochemical analyses demonstrate predominant axonal localization of sEH in primary cultures of not only cortical but also sympathetic and sensory neurons. Morphometric analyses of cultured sensory neurons indicate that exposure to a regioisomeric mixture of EETs (0.01-1.0 μM) causes a concentration-dependent increase in axon outgrowth. This axon promoting activity is not a generalized property of all regioisomers of EETs as axonal growth is enhanced in sensory neurons exposed to 14,15-EET but not 8,9- or 11,12-EET. 14,15-EET also promotes axon outgrowth in cultured cortical neurons. Co-exposure to EETs and either of two structurally diverse pharmacological inhibitors of sEH potentiates the axon-enhancing activity of EETs in sensory and cortical neurons. Mass spectrometry indicates that sEH inhibition significantly increases EETs and significantly decreases dihydroxyeicosatrienoic acid metabolites in neuronal cell cultures. These data indicate that EETs enhance axon outgrowth and suggest that axonal sEH activity regulates EETs-induced axon outgrowth. These findings suggest a novel therapeutic use of sEH inhibitors in promoting nerve regeneration.  相似文献   

13.
14.
SAX-3, a receptor for Slit in C. elegans, is well characterized for its function in axonal development. However, the mechanism that regulates the membrane localization of SAX-3 and the role of SAX-3 in axon outgrowth are still elusive. Here we show that SAX-3::GFP caused ectopic axon outgrowth, which could be suppressed by the loss-of-function mutation in unc-73 (a guanine nucleotide exchange factor for small GTPases) and unc-115 (an actin binding protein), suggesting that they might act downstream of SAX-3 in axon outgrowth. We also examined genes related to axon development for their possible involvement in the subcellular localization of SAX-3. We found the unc-51 mutants appeared to accumulate SAX-3::GFP in the neuronal cell body of the posterior deirid (PDE) neuron, indicating that UNC-51 might play a role in SAX-3 membrane localization. Furthermore, we demonstrate that the N-terminal signal sequence and the transmembrane domain are essential for the subcellular localization of SAX-3 in the PDE neurons.  相似文献   

15.
Capping protein (CP) is a heterodimer that regulates actin assembly by binding to the barbed end of F-actin. In cultured nonneuronal cells, each CP subunit plays a critical role in the organization and dynamics of lamellipodia and filopodia. Mutations in either α or β CP subunit result in retinal degeneration in Drosophila. However, the function of CP subunits in mammalian neurons remains unclear. Here, we investigate the role of the β CP subunit expressed in the brain, Capzb2, in growth cone morphology and neurite outgrowth. We found that silencing Capzb2 in hippocampal neurons resulted in short neurites and misshapen growth cones in which microtubules overgrew into the periphery and completely overlapped with F-actin. In searching for the mechanisms underlying these cytoskeletal abnormalities, we identified β-tubulin as a novel binding partner of Capzb2 and demonstrated that Capzb2 decreases the rate and the extent of tubulin polymerization in vitro. We mapped the region of Capzb2 that was required for the subunit to interact with β-tubulin and inhibit microtubule polymerization. A mutant Capzb2 lacking this region was able to bind F-actin and form a CP heterodimer with α2-subunit. However, this mutant was unable to rescue the growth cone and neurite outgrowth phenotypes caused by Capzb2 knockdown. Together, these data suggest that Capzb2 plays an important role in growth cone formation and neurite outgrowth and that the underlying mechanism may involve direct interaction between Capzb2 and microtubules.  相似文献   

16.
Retinal ganglion neurons extend axons that grow along astroglial cell surfaces in the developing optic pathway. To identify the molecules that may mediate axon extension in vivo, antibodies to neuronal cell surface proteins were tested for their effects on neurite outgrowth by embryonic chick retinal neurons cultured on astrocyte monolayers. Neurite outgrowth by retinal neurons from embryonic day 7 (E7) and E11 chick embryos depended on the function of a calcium-dependent cell adhesion molecule (N-cadherin) and beta 1-class integrin extracellular matrix receptors. The inhibitory effects of either antibody on process extension could not be accounted for by a reduction in the attachment of neurons to astrocytes. The role of a third cell adhesion molecule, NCAM, changed during development. Anti-NCAM had no detectable inhibitory effects on neurite outgrowth by E7 retinal neurons. In contrast, E11 retinal neurite outgrowth was strongly dependent on NCAM function. Thus, N-cadherin, integrins, and NCAM are likely to regulate axon extension in the optic pathway, and their relative importance varies with developmental age.  相似文献   

17.
Hallmarks of neuronal differentiation are neurite sprouting, extension, and branching. We previously showed that increased expression of CTP:phosphocholine cytidylyltransferase beta2 (CTbeta2), an isoform of a key phosphatidylcholine (PC) biosynthetic enzyme, accompanies neurite outgrowth (Carter, J. M., Waite, K. A., Campenot, R. B., Vance, J. E., and Vance, D. E. (2003) J. Biol. Chem. 278, 44988-44994). CTbeta2 mRNA is highly expressed in the brain. We show that CTbeta2 is abundant in axons of rat sympathetic neurons and retinal ganglion cells. We used RNA silencing to decrease CTbeta2 expression in PC12 cells differentiated by nerve growth factor. In CTbeta2-silenced cells, numbers of primary and secondary neurites were markedly reduced, suggesting that CTbeta2 facilitates neurite outgrowth and branching. However, the length of individual neurites was significantly increased, and the total amount of neuronal membrane was unchanged. Neurite branching of PC12 cells is known to be inhibited by activation of Akt and promoted by the Akt inhibitor LY294002. Our experiments showed that LY294002 increases neurite sprouting and branching in control PC12 cells but not in CTbeta2-deficient cells. CTbeta2 was not phosphorylated in vitro by Akt. However, inhibition of Cdk5 by roscovitine blocked CTbeta2 phosphorylation and reduced neurite outgrowth and branching. These results highlight the importance of CTbeta2 in neurons for promoting neurite outgrowth and branching and represent the first identification of a lipid biosynthetic enzyme that facilitates these functions.  相似文献   

18.
Formation of an axon is the first morphological evidence of neuronal polarization, visible as a profound outgrowth of the axon compared with sibling neurites. One unsolved question on the mechanism of axon formation is the role of axon outgrowth in axon specification. This question was difficult to assess, because neurons freely extend their neurites in a conventional culture. Here, we leveraged surface nano/micro‐modification techniques to fabricate a template substrate for constraining neurite lengths of cultured neurons. Using the template, we asked (i) Do neurons polarize even if all neurites cannot grow sufficiently long? (ii) Would the neurite be fated to become an axon if only one was allowed to grow long? A pattern with symmetrical short paths (20 μm) was used to address the former question, and an asymmetrical pattern with one path extended to 100 μm for the latter. Axon formation was evaluated by tau‐1/MAP2 immunostaining and live‐cell imaging of constitutively‐active kinesin‐1. We found that (1) neurons cannot polarize when extension of all neurites is restricted and that (2) when only a single neurite is permitted to grow long, neurons polarize and the longest neurite becomes the axon. These results provide clear evidence that axon outgrowth is required for its specification.  相似文献   

19.
Microtubules are part of cell structures that play a role in regulating the migration of cancer cells. The cellular apoptosis susceptibility (CSE1L/CAS) protein is a microtubule-associated protein that is highly expressed in cancer. We report here that CSE1L regulates the association of α-tubulin with β-tubulin and promotes the migration of MCF-7 breast cancer cells. CSE1L was associated with α-tubulin and β-tubulin in GST (glutathione S-transferase) pull-down and immunoprecipitation assays. CSE1L-GFP (green fluorescence protein) fusion protein experiments showed that the N-terminal of CSE1L interacted with microtubules. Increased CSE1L expression resulted in decreased tyrosine phosphorylation of α-tubulin and β-tubulin, increased α-tubulin and β-tubulin association, and enhanced assembly of microtubules. Cell protrusions or pseudopodia are temporary extensions of the plasma membrane and are implicated in cancer cell migration and invasion. Increased CSE1L expression increased the extension of MCF-7 cell protrusions. In vitro migration assay showed that enhanced CSE1L expression increased the migration of MCF-7 cells. Our results indicate that CSE1L plays a role in regulating the extension of cell protrusions and promotes the migration of cancer cells.  相似文献   

20.
Tubulin transport in neurons   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1996,133(6):1355-1366
A question of broad importance in cellular neurobiology has been, how is microtubule cytoskeleton of the axon organized? It is of particular interest because of the history of conflicting results concerning the form in which tubulin is transported in the axon. While many studies indicate a stationary nature of axonal microtubules, a recent series of experiments reports that microtubules are recruited into axons of neurons grown in the presence of a microtubule-inhibitor, vinblastine (Baas, P.W., and F.J. Ahmad. 1993.J. Cell Biol. 120:1427-1437: Ahmad F.J., and P.W. Baas. 1995. J. Cell Sci, 108:2761-2769; Sharp, D.J., W. Yu, and P.W. Baas. 1995. J. Cell Biol, 130:93-103; Yu, W., and P.W. Baas. 1995. J. Neurosci. 15:6827-6833.). Since vinblastine stabilizes bulk microtubule-dynamics in vitro, it was concluded that preformed microtubules moved into newly grown axons. By visualizing the polymerization of injected fluorescent tubulin, we show that substantial microtubule polymerization occurs in neurons grown at reported vinblastine concentrations. Vinblastine inhibits, in a concentration-dependent manner, both neurite outgrowth and microtubule assembly. More importantly, the neuron growth conditions of low vinblastine concentration allowed us to visualize the footprints of the tubulin wave as it polymerized and depolymerized during its slow axonal transport. In contrast, depolymerization resistant fluorescent microtubules did not move when injected in neurons. We show that tubulin subunits, not microtubules, are the primary form of tubulin transport in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号