首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A. Rolando    P. Laiolo    M. Formica 《Journal of Zoology》1997,242(2):299-308
We studied the flocking and foraging behaviour of the chough Pyrrhocorax pyrrhocorax and the Alpine chough P. gruculus coexisting in the south-western Italian Alps in order to evaluate the costs and benefits of foraging in single- and mixed-species flocks.
In the single-species context, flock size significantly affected the foraging behaviour of the Alpine chough; in larger flocks, the birds stayed for a shorter time in a patch and fed more quickly than in smaller flocks. Flock size did not significantly affect the foraging behaviour of the chough, probably because of the small number of individuals per flock.
The propensity for mixed-species flocking was rather low. The observed frequencies of single-species flocks of choughs and Alpine choughs were significantly higher than those expected on the basis of random flocking, whereas the observed frequencies of mixed-species flocks of the two species were lower than those expected. The stay times became significantly shorter for the chough in the presence of the Alpine chough. Moreover, feeding rates of the Alpine chough were significantly lower in the presence of the dominant chough.
The present study does not confirm the hypothetical foraging advantages of flocking. In single-species flocks, the benefits for the Alpine chough (higher feeding rates in larger flocks) were roughly compensated by the costs (shorter stay times in larger flocks), whereas the chough apparently neither gained benefits nor endured costs.
In mixed-species flocks, the Alpine chough sustained costs due to a reduction of feeding rates and the chough suffered costs due to a reduction of stay times. Hence, on average, single-species flocking gives no evident foraging advantages to either the chough or the Alpine chough, whereas mixed-species flocking provides some disadvantages for both species.  相似文献   

2.
In the Joetsu region of central Honshu, Japan, snow lies on the ground 2–3 m deep from January to February every year. To test the effects of snow cover on the social and foraging behaviors of the great tit (Parus major Linnaeus) in the region, the following parameters were compared between the pre-snowy period (November and December) and the snowy period (January and February) at the individual level: population size, monospecific flock size and the stability of its membership, home range size, attendance rate with mixed-species flocks, and foraging height. Great tits lived alone or in pairs, but often joined mixed-species flocks. Throughout the study period, individuals exhibited strong site fidelity, which resulted in a stable population size. Neither the size of a monospecific flock nor its membership was affected by snow cover. The home range expanded when birds joined mixed-species flocks during both periods. Birds more frequently joined mixed-species flocks during the snowy period, and the size of mixed-species flocks was significantly larger than during the pre-snowy period. During the snowy period, birds shifted their foraging position from the ground to the upper parts of trees. They also used the upper parts of trees when they joined mixed-species flocks. These results suggest that the intraspecific sociality of great tits is relatively insensitive to snow cover, but that the home range size and foraging positions are affected by joining mixed-species flocks, rather than by snow cover.  相似文献   

3.
Advantages of social foraging of Willow Tits Parus montanus   总被引:2,自引:0,他引:2  
OLAV HOGSTAD 《Ibis》1988,130(2):275-283
The mean number of Willow Tits Parus montanus in single-species flocks was significantly larger than in mixed-species flocks of Willow and Coal Tits P. ater. Both flock size and the tendency of Willow Tits to join mixed-species flocks were negatively correlated with ambient temperature, probably because each bird, when the metabolic rate of the birds increased, could allocate more time to foraging due to improved predator detection by many eyes. The vigilance time of Willow Tits decreased with flock size and was determined by the total number of individuals in a flock rather than by the number of Willow Tits in mixed-species flocks of Willow and Coal Tits.  相似文献   

4.
P. W. GREIG-SMITH 《Ibis》1978,120(3):284-297
Mixed-species flocks of birds were observed during the wet season (July to September 1975) in savanna woodland in Ghana. Thirty-four flocks contained birds of 56 species in 20 families, including insectivorous, granivorous, and nectarivorous species, using a wide range of foraging methods. Only two species occurred in more than half the flocks. There was no correlation between the number of flocks joined by a species and its abundance in the community. Among insectivores, but not granivores, the species which joined most flocks were those which habitually occurred in the largest single-species groups. All stages of breeding activity were represented by the various members. Some species joined flocks only while these were passing through their territories. Of the two species which were present most frequently, there were no differences between mixed and single-species flocks for Eremomela pusilla, but Parus leucomelas foraged and called on more occasions in mixed flocks than single-species flocks, though the rates of foraging and calling were related only to the number of P. leucomelas present. Groups of P. leucomelas appeared to initiate some flocks by attraction due to their conspicuous wing-bars, active movement, and loud calls. Black-and-white species joined them first, followed by birds of other plumage patterns. The advantages of mixed flocking are thought to be connected with finding patches of the food of bark- and foliage-searching insectivores, which were the only species regularly seen foraging in the flocks. Because of dry season burning which leaves small unburnt patches of savanna, these insect species may share a common, patchy distribution. Birds may also gain protection from predators, and some species probably gain no advantages. The species composition and behaviour of flocks previously recorded elsewhere in African savannas are similar to the Ghana flocks.  相似文献   

5.
Amongst the benefits of foraging in flocks are the enhancement of food finding and predation avoidance. Characteristics such as size, individual position, as well as position and distance between members are factors that may influence vigilance and foraging. In a study using scaled doves, Columbina squammata, I observed a negative correlation between group size and vigilance and a positive correlation with time spent foraging, which suggests a reduction of costs and an increase of benefits as a consequence of larger group sizes. Individual position in the flock appeared to be an important factor in this trade-off. Peripheral individuals were more vigilant and foraged less than central ones, suggesting an edge effect in flocks of this species. The clustering of conspecifics may be related with fast transmission of information. Overall, aggressive interactions were rarely observed; when registered, they occurred mostly in larger groups, suggesting an effect of interference competition. These results imply that predation may be a strong pressure on the scaled dove's flock formation and behaviour.  相似文献   

6.
Prey avoid being eaten by assessing the risk posed by approaching predators and responding accordingly. Such an assessment may result in prey–predator communication and signalling, which entail further monitoring of the predator by prey. An early antipredator response may provide potential prey with a selective advantage, although this benefit comes at the cost of disturbance in terms of lost foraging opportunities and increased energy expenditure. Therefore, it may pay prey to assess approaching predators and determine the likelihood of attack before fleeing. Given that many approaching potential predators are detected visually, we hypothesized that species with relatively large eyes would be able to detect an approaching predator from afar. Furthermore, we hypothesized that monitoring of predators by potential prey relies on evaluation through information processing by the brain. Therefore, species with relatively larger brains for their body size should be better able to monitor the intentions of a predator, delay flight for longer and hence have shorter flight initiation distances than species with smaller brains. Indeed, flight initiation distances increased with relative eye size and decreased with relative brain size in a comparative study of 107 species of birds. In addition, flight initiation distance increased independently with size of the cerebellum, which plays a key role in motor control. These results are consistent with cognitive monitoring as an antipredator behaviour that does not result in the fastest possible, but rather the least expensive escape flights. Therefore, antipredator behaviour may have coevolved with the size of sense organs, brains and compartments of the brain involved in responses to risk of predation.  相似文献   

7.
Pomara LY  Cooper RJ  Petit LJ 《Oecologia》2007,153(1):121-133
We examined the importance of mixed-species flock abundance, individual bird home range size, foraging height, and foraging patch characteristics in predicting the propensity for five Neotropical passerine bird species (Slaty Antwren, Myrmotherula schisticolor; Golden-crowned Warbler, Basileuterus culicivorus; Slate-throated Redstart, Myioborus miniatus; Wilson’s Warbler, Wilsonia pusilla; and Black-and-white Warbler, Mniotilta varia) to forage within flocks, rather than solitarily. We used study plots in primary mid-elevation forest and in shade coffee fields in western Panama. We expected that all species would spend as much time as possible flocking, but that the social and environmental factors listed above would limit compatibility between flock movements and individual bird movements, explaining variability in flocking propensity both within and among species. Flocking propensity was well predicted by home range size and flock abundance together, for four of the five species. While flock abundance was uniform across plots, home range sizes varied among species and plots, so that home range size appeared to be the principle factor limiting flocking propensity. Estimates of flock abundance were still required, however, for calculating flocking propensity values. Foraging height and patch characteristics slightly improved predictive ability for the remaining species, M. miniatus. In general, individual birds tended to join flocks whenever one was available inside their home range, regardless of a flock’s specific location within the home range. Flocking propensities of individual species were lower in shade coffee fields than in forests, and probably vary across landscapes with variations in habitat. This variability affects the stability and species composition of flocks, and may affect survival rates of individual species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Organized flight of homing pigeons (Columba livia) was previously shown to rely on simple leadership rules between flock mates, yet the stability of this social structuring over time and across different contexts remains unclear. We quantified the repeatability of leadership-based flock structures within a flight and across multiple flights conducted with the same animals. We compared two contexts of flock composition: flocks of birds of the same age and flight experience; and, flocks of birds of different ages and flight experience. All flocks displayed consistent leadership-based structures over time, showing that individuals have stable roles in the navigational decisions of the flock. However, flocks of balanced age and flight experience exhibited reduced leadership stability, indicating that these factors promote flock structuring. Our study empirically demonstrates that leadership and followership are consistent behaviours in homing pigeon flocks, but such consistency is affected by the heterogeneity of individual flight experiences and/or age. Similar evidence from other species suggests leadership as an important mechanism for coordinated motion in small groups of animals with strong social bonds.  相似文献   

9.
Low Foraging Success of Semipalmated Sandpipers at the Edges of Groups   总被引:2,自引:0,他引:2  
Variation in foraging success in relation to spatial position in a group is little known in species that feed on mobile prey that can hide or flee upon disturbance by foragers. I examined the foraging success of individuals located either at the edge or at the centre of flocks of semipalmated sandpipers (Calidris pusilla) feeding on a burrowing amphipod (Corophium volutator) during migration stopover in the Bay of Fundy, Canada. The rates of pecking, prey capture and success were lower for individuals foraging at the edge than at the centre of flocks. Edge birds spent more time running and more time flying than centre birds. Edge birds moved away from the centre of the flock and made frequent short flights towards the centre. In contrast, centre birds rarely moved in a specific direction and flew mostly to relocate elsewhere with the whole flock. Sandpiper flocks foraged over a large area in a relatively short amount of time. In addition, amphipod density is high in this habitat. It thus appears unlikely that prey depletion or low food availability at the edges of groups could explain the spatial variation in foraging success. Low foraging success at the edges of flocks thus arose mainly because of time costs related to flock expansion and retraction. The effect of mutual interference among foragers and of predation risk by falcons is discussed with respect to flock expansion and retraction.  相似文献   

10.
Summary Foraging efficiency and intraspecific competition were compared between wild adult and immature rooks Corvus frugilegus with respect to flock size. Behavioural time budgets, and observations of prey selection and prey energetic values revealed that adult rooks in large flocks (> 50 individuals) consumed smaller, less profitable prey, but allocated more time to feeding and fed at a faster rate and with greater success than adults in small flocks. By contrast, immature rooks in flocks of more than 30 individuals allocated proportionally less time to feeding, fed at a lower rate and fed with no increase in success rate than when foraging in smaller flocks. Agonistic encounters and the avoidance of adults by immature rooks appeared responsible for such inefficient foraging. Hence immature rooks showed a preference for smaller flocks (< 50 individuals) with low adult: immature ratios while adults preferred larger flocks (> 50 individuals). We discuss the possible influence of competitive disadvantages on immature rook distribution, flock composition and post-natal dispersal.  相似文献   

11.
Abstract: We examined the role of mixed‐species flocks for forest birds during their breeding and non‐breeding seasons in the use of savannas adjacent to forests in central Cerrado, Brazil. Transect surveys (n = 64) were conducted in eight savanna patches. Distances of birds from forests were estimated. Recorded birds were classified as members or not of mixed‐species flocks. About half of the bird species recorded in savannas were found in at least one mixed‐species flock. As distance from the forest increased, the number of species in mixed‐species flocks tended not to vary, while the number of species foraging alone or in mono‐specific groups decreased. Thus, for some forest species, participation in mixed‐species flocks allowed a greater use of more distant savannas. This tendency of being in mixed‐species flocks at greater distances from forests also can be interpreted as a reluctance to forage alone or in mono‐specific groups due to higher predation risk in less protective vegetation distant from cover. There was strong seasonal variation in the participation of bird species in mixed‐species flocks. There were significantly more species in mixed‐species flocks than out of these associations in the non‐breeding season, while differences in the breeding season were not significant. These patterns occurred, in part because mixed‐species flocks tended to be more frequent, to have more species and to forage at greater distances from forests during the early non‐breeding season than in other periods. This study suggests that the formation of mixed‐species flocks plays an important role in promoting the use of adjacent savannas by forest birds at forest/savanna boundaries in Cerrado. It also pointed out a novel advantage gained by birds with participation in mixed‐species flocks – greater use of adjacent vegetation patches.  相似文献   

12.
Decrease in individual vigilance with flock size is a widely recognized pattern in group‐living species. However such a relationship may be affected by other factors, such as age and flock composition. For instance, because young animals generally lack experience and have higher nutritional needs than adults, they can be expected not only to be less vigilant than adults but also to decrease their vigilance level by a greater extent when flock size increases than adults do. We investigated this issue using data on greater flamingos wintering in the gulf of Gabès, in southern Tunisia. Flamingos tended to congregate in small single‐age flocks for feeding, but as flock size increased, flocks became mixed. We found that when flock size increased, young flamingos significantly decreased their vigilance time, while adult did not, suggesting an age‐dependent flock size effect on vigilance. However, when flock composition (single‐age vs. mixed) was taken into account, a more complex pattern was found. Within single‐age and small flocks, no difference was found between young flamingos and adult ones regarding their vigilance level and their response to increasing flock size. However, within mixed and large flocks, adult flamingos were more vigilant than young ones, while variation in flock size did not result in a significant change in vigilance. These results suggest that young birds relied on the presence of adults, and hence more experienced individuals in detecting dangers, to reduce their vigilance and to increase their foraging time in order to satisfy their higher nutritional requirements. They could also be interpreted as a possible consequence of increasing competition with flock size which constrained more nutritionally stressed young flamingos to increase their foraging time to the detriment of vigilance.  相似文献   

13.
Flight initiation distance (FID), the distance at which individuals take flight when approached by a potential (human) predator, is a tool for understanding predator–prey interactions. Among the factors affecting FID, tests of effects of group size (i.e., number of potential prey) on FID have yielded contrasting results. Group size or flock size could either affect FID negatively (i.e., the dilution effect caused by the presence of many individuals) or positively (i.e., increased vigilance due to more eyes scanning for predators). These effects may be associated with gregarious species, because such species should be better adapted to exploiting information from other individuals in the group than nongregarious species. Sociality may explain why earlier findings on group size versus FID have yielded different conclusions. Here, we analyzed how flock size affected bird FID in eight European countries. A phylogenetic generalized least square regression model was used to investigate changes in escape behavior of bird species in relation to number of individuals in the flock, starting distance, diet, latitude, and type of habitat. Flock size of different bird species influenced how species responded to perceived threats. We found that gregarious birds reacted to a potential predator earlier (longer FID) when aggregated in large flocks. These results support a higher vigilance arising from many eyes scanning in birds, suggesting that sociality may be a key factor in the evolution of antipredator behavior both in urban and rural areas. Finally, future studies comparing FID must pay explicit attention to the number of individuals in flocks of gregarious species.  相似文献   

14.
Summary This study examines the relative importance of habitat and season in determining size and composition of foraging flocks of European Starlings (Sturnus vulgaris). We hypothesized that if season was the principal determinant of flock size, variation across seasons (within habitat) would be greater than variation across habitats (within season). The calendar year was divided into 6 seasons corresponding to major stages in the annual cycle of starlings. After measuring the availibility of 15 foraging habitats occurring within the study area, we drove a 184 km route weekly (over a 17 month period) to census starling flock size, species composition, habitat use, and activity.Although flock size was influenced by both season and habitat, it varied relatively less within seasons (across habitats). Only five of nine seasons showed significant habitat effects, and two (of the five) were significant mainly because of large aggregations in habitats with unusually abundant food (e.g. feedlots, cornfields). In contrast, eight of nine habitats showed significant seasonal effects. The only exception (hay) was little used (<1% of all birds observed). For starlings the activities associated with seasonal events of the annual cycle were a major influence on patterns of social foraging. Habitat factors were less important because of constraints imposed by seasonal factors, but under some conditions (e.g. drought, clumped food supply) they became dominant.  相似文献   

15.
The benefits of flocking to prey species, whether through collective vigilance,dilution of risk, or predator confusion, depend on flock members respondingin a coordinated way to attack. We videotaped sparrowhawks attackingredshank flocks to determine if there were differences in thetiming of escape flights between flock members and the factorsthat might affect any differences. Sparrowhawks are surpriseshort-chase predators, so variation in the time taken to takeflight on attack is likely to be a good index of predation risk.Most birds in a flock flew within 0.25 s of the first bird flying,and all birds were flying within 0.7 s. Redshanks that werevigilant, that were closest to the approaching raptor, and thatwere close to their neighbors took flight earliest within aflock. Birds in larger flocks took longer, on average, to takeflight, measured from the time that the first bird in the flockflew. Most birds took flight immediately after near neighbors tookoff, but later flying birds were more likely to fly immediatelyafter more distant neighbors took flight. This result, alongwith the result that increased nearest neighbor distance increasedflight delay, suggests that most redshanks flew in responseto conspecifics flying. The results strongly suggest that thereis significant individual variation in predation risk withinflocks so that individuals within a flock will vary in benefitsthat they gain from flocking.  相似文献   

16.
The occurrence of mixed‐species foraging flocks is a worldwide phenomenon in terrestrial bird communities. Previous studies suggest that individuals participating in flocks might derive benefits in terms of improved feeding efficiency and/or reduced risk of predation. However, very little is known about how individuals establish mixed‐species flocks. Here, I provide the first experimental evidence that long‐distance calling by the willow tit, Poecile montanus, facilitates the establishment of mixed‐species flocks at a foraging patch. Observations at experimental foraging patches showed that willow tits that find a food source produce long‐distance calls, particularly when they are isolated from conspecific flockmates. The probability of long‐distance calling was negatively correlated with the number of heterospecific foraging individuals near the food source. A playback experiment confirmed that calls attract both conspecific and heterospecific members of foraging flocks. This study demonstrates that willow tits use long‐distance calls to attract conspecific flockmates to foraging patches, and these calls can also facilitate the formation of mixed‐species flocks on patches.  相似文献   

17.
Abstract: Line-transect-based distance sampling has been used to estimate density of several wild bird species including wild turkeys (Meleagris gallopavo). We used inflatable turkey decoys during autumn (Aug-Nov) and winter (Dec-Mar) 2003-2005 at study sites in the Texas Rolling Plains, USA, to simulate Rio Grande wild turkey (M. g. intermedia) flocks. We evaluated detectability of flocks using logistic regression models. Our modeling effort suggested that distance to a flock and flock size played important roles in flock detectability. We also conducted surveys from roads for wild turkeys during November 2004-January 2006. The detection probability of decoy flocks was similar to wild turkey flocks during winter (decoy flock, 69.3 ± 6.2% [x̄ ± 95% CI]; wild turkey flock, 62.2 ± 18.3%) and autumn (decoy flock, 44.1 ± 5.1%; wild turkey flock, 44.7 ± 25.6%), which suggested that using decoys was appropriate for evaluating detectability of wild turkey flocks from roads. We conducted computer simulations to evaluate the performance of line-transect-based distance sampling and examined the power to detect trends in population change. Simulations suggested that population density may be underestimated by 12% during inter and 29% during autumn. Such bias occurred because of incomplete detectability of flocks near roads. Winter surveys tended to have less bias, lower relative variability, and greater power than did autumn surveys. During winter surveys, power was sufficient (≥0.80) to detect a 10-25% change in population density in 8-12 years using ≥100 16-km transects or ≥80 32-km transects. We concluded line-transect-based distance sampling from roads is an efficient, effective, and inexpensive technique for monitoring Rio Grande wild turkey populations across large scales.  相似文献   

18.
Zusammenfassung  In den Jahren 1994 bis 1998 wurden an der Unteren Mittelelbe Untersuchungen zum Aggregationsverhalten weidender Bläß- und Saatgänse durchgeführt. Mehr als 90% aller erfaßten Gänse hielten sich in Trupps auf, die aus mehr als 500 Vögeln bestanden. Eine verlängerte Freßzeit auf Kosten von Komfortverhalten und Ruhen belegte einen erhöhten Konkurrenzdruck mit zunehmender Truppgröße. Die Fluchtdistanzen kleiner Gänsegruppen war mit 60 bis 120 Metern geringer als bei größeren, doch nahmen sie bereits ab etwa 150 Vögeln bei einem Wert von ca. 200 Metern nicht weiter zu. Mit zunehmenden Bestandszahlen wuchs die Größe der Haupttrupps im Gebiet, zugleich erhöhte sich jedoch auch die Anzahl der Trupps.Eine mögliche Erklärung für die beobachtete Verteilung der Gänse auf die unterschiedlichen Truppgrößen besteht darin, daß ein großer Teil der Rastpopulation bei der Nahrungssuche opportunistisch vorgeht. Diese Gänse orientieren sich bei der Feldwahl an einigen wenigen, besonders erfolgreichen Art- bzw. Gattungsgenossen. Feldgröße und maximale Individuendichte waren wichtige Faktoren, welche die absoluten Truppgrößen auf den überwiegend aus Äckern bestehenden Nahrungsflächen begrenzten.
Flock sizes in foraging White-fronted and Bean Geese in the Elbe valley and their effects on flight distance and time budget
Summary  Flocking behaviour of foraging Whitefronted and Bean Geese (Anser albifrons, A. fabalis) was studied in the valley of the lower River Elbe from 1994 to 1998. Geese were counted every forthnight in the winter season of 1994/95 in a study area of 170 km2, and daily in 1995/96 and 1996/97 in an area of 40 km2. In the winter of 1997/98, counts were conducted every second day. Feeding behaviour was sampled by scan sampling in 1995/96, and distances of flight reactions to an approaching car were estimated in 1996/97 and 1997/98.Usually, geese formed large flocks. More than 90% of individuals recorded stayed in groups of more than 500 birds. In large flocks (several thousand geese), prolonged feeding times at the cost of preening and resting behaviour indicated a severe competition between individuals. Flight distances were lower in small flocks, but did not increase further with flocks becoming larger than 150 birds. As shown in earlier studies, the benefit of flocking in terms of predator avoidance is unlikely to increase any further with groups exceeding a few hundred birds.One possible explanation of the observed flocking behaviour could be that most individuals in the population follow an opportunistic strategy when foraging. They join their foraging cnspecifics instead of looking for feeding sites on their own. Flock size was limited by population size on the one hand, and by field size on the other. Average maximum density of individuals in a flock was 0,1 birds per square meter. Thus, bird density together with field size are likely to be the main factors determining and constraining flock size on agricultural fields.
  相似文献   

19.
We studied the effects of weather and tides on percent feeding and flock positions of wintering redheads (Aythya americana Eyton) in the Chandeleur Sound, Louisiana, USA. Flock scans (n = 750) were made on 55 flocks from November through March of 1988–1989. The percent of the flock that was feeding was negatively correlated with time of day, temperature, water level, and distance of the flock from shore, and was positively correlated with wind velocity, flock size, fetch, and wave height; birds also fed more in early winter and during northerly winds. Flocks were closer to land earlier in the winter on cloudy, rainy, and windy days when waves were high, and those flocks were smaller than flocks farther from shore. Conditions associated with reduced fetch by flocks included later time of day, smaller waves, warmer air temperatures, northerly wind shifts, stronger winds, increasing cloud cover, and rain. Redheads minimized energy expenditure by foraging during low tides and in shallow water closer to shore; they increased feeding and reduced fetch during times of high thermoregulatory demands.  相似文献   

20.
Thirty-two species were recorded in mixed-species bird flocks led by the Grey-cheeked Fulvetta Alcippe morrisonia in Fushan Experimental Forest, Taiwan. Flocks averaged (± se) 5.8 ± 0.2 species and 51.4 ± 2.7 birds. Most participants were resident species (86.3%), some were elevational migrants (12.6%) and a few were latitudinal migrants (1.1%). Flock size was determined primarily by the abundance of Grey-cheeked Fulvettas, the most abundant species (68.1%). Flocks moved at an average rate of 10.8 ± 0.7 m/min, with larger flocks moving faster than smaller flocks. In moving flocks, canopy species were usually near the front, while understorey species usually followed. Fulvettas gave higher-intensity alarm calls and dived down more frequently in response to avian threats, especially raptors, than to non-avian threats. The overall foraging niche-breadth of the fulvetta was greater than that of any attendant species. Each species in a flock had a unique foraging niche. Most attendant species exhibited low foraging niche-overlap with the Grey-cheeked Fulvetta. Both the predator avoidance and the foraging efficiency hypotheses for mixed-species flocking were supported. The Grey-cheeked Fulvetta plays a critical role in the function of mixed-species flocks. A large flock formed around the Grey-cheeked Fulvetta provides attendant species with numerous opportunities for obtaining food and protection from predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号