首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hydrogen peroxide efficiently protects horseradish peroxidase against inactivation by hydroxymethylhydroperoxide, whereas the hydrogen donor substrate guaiacol has little protective effect. These results, and direct studies of the effects of hydroxymethylhydroperoxide on peroxidase compound II, indicate that compound II and possibly also compound I are quite resistant to hydroxymethylhydroperoxide. The inactivation of peroxidase caused by hydroxymethylhydroperoxide seems to be due to a reaction of the peroxide with free Fe3+ peroxidase.Albumin, which protects thiol enzymes against hydroxymethylhydroperoxide, does not protect peroxidase. Neither does 2-mercaptoethanol, which also protects thiol enzymes, appear to hamper the inactivation reaction. This seems to indicate that the inactivation is not caused by a free radical released from hydroxymethylhydroperoxide.Hydroxymethylhydroperoxide inactivates peroxidase by attacking the hematin group, the ring of which is opened by way of at least three intermediates. The most stable intermediate is green (“compound IV”).H2C2 attacks the methemoglobin-peroxide compound faster than hydroxymethylhydroperoxide does. These reactions are much slower than the attack of hydroxymethylhydroperoxide on peroxidase.It is suggested that the inactivation of peroxidase takes place as a side reaction in the process of forming compound I from hydroxymethylhydroperoxide and peroxidase.  相似文献   

2.
M Santimone 《Biochimie》1975,57(3):265-270
The kinetics of compound II formation, obtained upon mixing a highly purified horseradish peroxidase and hydrogen peroxide, was spectrophotometrically studied at three wavelengths in the absence of an added reducing agent. Our experiments confirm George's finding that more than one mole of compound II is formed per mole of hydrogen peroxide added. The new mechanism that we propose, contrary to the mechanism of George, is only valid when compound II is obtained in the absence of an added donor. Moreover, it is not inconsistent with the classical Chance mechanism of oxidation of an added donor by the system peroxidase -- hydrogen peroxide. According to this new mechanism, in the absence of an added donor, compound II formation involved two pathways. The first pathway is the monomolecular reduction of compound I by the endogenous donor, and the second pathway is the formation of two moles of compound II through the oxidoreduction reaction between one mole of peroxidase and one mole of compound I.  相似文献   

3.
The catalytic cycle of horseradish peroxidase (HRP; donor:hydrogen peroxide oxidoreductase; EC 1.11.1.7) is initiated by a rapid oxidation of it by hydrogen peroxide to give an enzyme intermediate, compound I, which reverts to the resting state via two successive single electron transfer reactions from reducing substrate molecules, the first yielding a second enzyme intermediate, compound II. To investigate the mechanism of action of horseradish peroxidase on catechol substrates we have studied the oxidation of both 4-tert-butylcatechol and dopamine catalysed by this enzyme. The different polarity of the side chains of both o-diphenol substrates could help in the understanding of the nature of the rate-limiting step in the oxidation of these substrates by the enzyme. The procedure used is based on the experimental data to the corresponding steady-state equations and permitted evaluation of the more significant individual rate constants involved in the corresponding reaction mechanism. The values obtained for the rate constants for each of the two substrates allow us to conclude that the reaction of horseradish peroxidase compound II with o-diphenols can be visualised as a two-step mechanism in which the first step corresponds to the formation of an enzyme-substrate complex, and the second to the electron transfer from the substrate to the iron atom. The size and hydrophobicity of the substrates control their access to the hydrophobic binding site of horseradish peroxidase, but electron density in the hydroxyl group of C-4 is the most important feature for the electron transfer step.  相似文献   

4.
A kinetic study of the reaction of two turnip peroxidases (P1 and P7) with hydrogen peroxide to form the primary oxidized compound (compound I) has been carried out over the pH range from 2.4 to 10.8. In the neutral and acidic pH regions, the rates depend linearly on hydrogen peroxide concentration whereas at alkaline pH values the rates display saturation kinetics. A compound is made with the cyanide binding reaction to peroxidases since the two reactions are influenced in the same manner by ionization of groups on the native enzymes. Two different ionization processes of peroxidase P1 with pKa values of 3.9 and 10 are required to explain the rate pH profile for the reaction with H2O2. Protonation of the former group and ionization of the latter causes a decrease in the rate of reaction of the enzyme with H2O2. In the case of peroxidase P7 a minimum model involves three ionizable groups with pKa values of 2.5, 4 and 9. Protonation of the former two groups and ionization of the latter lowers the reaction rate. In the pH-independent region, the rate of formation of compound I was measured as a function of temperature. From the Arhenius plots the activation energy for the reaction was calculated to be 2.9 +/- 0.1 kcal/mol for P1 and 5.4 +/- 0.3 kcal/mol for P7. However, the rates are independent of viscosity in glycerol-water mixtures up to 30% glycerol.  相似文献   

5.
Li DJ  Yan RW  Luo H  Zou GL 《Biochemistry. Biokhimii?a》2005,70(10):1173-1179
In this work, the reactions of nitrite (NO2-) and peroxynitrite (ONOO-) with organic molecules as well as with hemoglobin (Hb) were examined and the potential interference with the detection of hydrogen peroxide and Hb was investigated. ONOO- at low concentrations (35-140 microM) induced a concentration-dependent oxidation of o-phenylenediamine and guaiacol, and this process can be improved by the addition of Hb in a concentration-dependent manner. This enhancing effect of Hb was possibly due to the formation of such highly reactive species as ferrylHb during the reaction of ONOO- and Hb. NO2- also oxidized the aromatic amine o-phenylenediamine, but its efficiency was much lower than that of ONOO-. A 300-fold excess of NO2- over hydrogen peroxide inhibited the oxidation of Pyrogallol Red mediated by hydrogen peroxide and Hb, which was due in part to the reaction of NO2- with Hb ferryl species compound I and compound II and the phenoxyl radical. These data suggest that ONOO- and NO2- can interfere with the detection of hydrogen peroxide. The overestimation or underestimation of the hydrogen peroxide detected is dependent upon the organic molecule utilized for detection and the relative rate of NO2-, superoxide, and ONOO- generation.  相似文献   

6.
The reaction of Euphorbia characias latex peroxidase (ELP) with hydrogen peroxide as the sole substrate was studied by conventional and stopped-flow spectrophotometry. The reaction mechanism occurs via three distinct pathways. In the first (pathway I), ELP shows catalase-like activity: H2O2 oxidizes the native enzyme to compound I and subsequently acts as a reducing substrate, again converting compound I to the resting ferric enzyme. In the presence of an excess of hydrogen peroxide, compound I is still formed and further reacts in two other pathways. In pathway II, compound I initiates a series of cyclic reactions leading to the formation of compound II and compound III, and then returns to the native resting state. In pathway III, the enzyme is inactivated and compound I is converted into a bleached inactive species; this reaction proceeds faster in samples illuminated with bright white light, demonstrating that at least one of the intermediates is photosensitive. Calcium ions decrease the rate of pathway I and accelerate the rate of pathways II and III. Moreover, in the presence of calcium the inactive stable verdohemochrome P670 species accumulates. Thus, Ca2+ ions seem to be the key for all catalytic pathways of Euphorbia peroxidase.  相似文献   

7.
Peroxide compounds of manganese protoporphyrin IX and its complexes with apo-horseradish peroxidase and apocytochrome-c peroxidase were characterized by electronic absorption and electron paramagnetic resonance spectroscopies. An intermediate formed upon titration of Mn(III)-horseradish peroxidase with hydrogen peroxide exhibited a new electron paramagnetic resonance absorption at g = 5.23 with a definite six-lined 55Mn hyperfine (AMn = 8.2 mT). Neither a porphyrin pi-cation radical nor any other radical in the apoprotein moiety could be observed. The reduced form of Mn-horseradish peroxidase, Mn(II)-horseradish peroxidase, reacted with a stoichiometric amount of hydrogen peroxide to form a peroxide compound whose electronic absorption spectrum was identical with that formed from Mn(III)-horseradish peroxidase. The electronic state of the peroxide compound of manganese horseradish peroxidase was thus concluded to be Mn(IV), S = 3/2. Mn(III)-cytochrome-c peroxidase reacted with stoichiometry quantities of hydrogen peroxide to form a catalytically active intermediate. The electronic absorption spectrum was very similar to that of a higher oxidation state of manganese porphyrin, Mn(V). Since the peroxide compound of manganese cytochrome-c peroxidase retained two oxidizing equivalents per mol of the enzyme (Yonetani, T. and Asakura, T. (1969) J. Biol. Chem. 244, 4580-4588), this peroxide compound might contain an Mn(V) center.  相似文献   

8.
The effects of temperature (20 to -38 degrees C), pressure (normal pressures to 1.2 kbar) and solvent (water, 60% DMSO and 50% methanol) on the reaction of hydrogen peroxide or ethyl peroxide with horseradish peroxidase were studied. The formation of compound I was followed at 403 nm in a stopped flow apparatus adapted for high pressure and low temperature work. As with the alkaline form (Job and Dunford 1978), the neutral form of the peroxidase binds peroxide substrates in two steps. It was the combined use of organic solvents and low temperatures which revealed saturation kinetics: (Formula: see text) compound I, where E = horseradish peroxidase and S peroxide substrate. In water and organic solvents at temperatures above -10 degrees C, K1 was too small and k2 too large to be measured, here K1 X k2 was obtained. k-2 was too small for measurement under all conditions. Whereas K1 was insensitive to the peroxide substrate and solvent composition, k2 was very sensitive. The thermodynamic parameters delta H, delta S and delta V for K1 and k2 were obtained under different experimental conditions and the data are interpreted within the available thermodynamic theories.  相似文献   

9.
Reactions of ferric horseradish peroxidase with hydrogen cyanide and hydrogen peroxide were studied as a function of pressure. Activation volumes are small and differ in sign (delta V = 1.7 +/- 0.5 ml/mol for peroxidase + HCN and -1.5 +/- 0.5 ml/mol for peroxidase + H2O2). The temperature dependence of cyanide binding to horseradish peroxidase was also determined. A comparison is made of relevant parameters for cyanide binding and compound I formation.  相似文献   

10.
The reaction of nitrite (NO2-) with horseradish peroxidase and lactoperoxidase was studied. Sequential mixing stopped-flow measurements gave the following values for the rate constants of the reaction of nitrite with compounds II (oxoferryl heme intermediates) of horseradish peroxidase and lactoperoxidase at pH 7.0, 13.3 +/- 0.07 mol(-1) dm3 s(-1) and 3.5 +/- 0.05 x 10(4) mol(-1) dm3 s(-1), respectively. Nitrite, at neutral pH, influenced measurements of activity of lactoperoxidase with typical substrates like 2,2'-azino-bis[ethyl-benzothiazoline-(6)-sulphonic acid] (ABTS), guaiacol or thiocyanate (SCN-). The rate of ABTS and guaiacol oxidation increased linearly with nitrite concentration up to 2.5-5 mmol dm(-3). On the other hand, two-electron SCN- oxidation was inhibited in the presence of nitrite. Thus, nitrite competed with the investigated substrates of lactoperoxidase. The intermediate, most probably nitrogen dioxide (*NO2), reacted more rapidly with ABTS or guaiacol than did lactoperoxidase compound II. It did not, however, effectively oxidize SCN- to OSCN-. NO2- did not influence the activity measurements of horseradish peroxidase by ABTS or guaiacol method.  相似文献   

11.
Transient kinetic analysis of biphasic, single turnover data for the reaction of 2,2'-azino-bis[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS) with horseradish peroxidase (HRPC) compound II demonstrated preequilibrium binding of ABTS (k(+5) = 7.82 x 10(4) M(-)(1) s(-)(1)) prior to rate-limiting electron transfer (k(+6) = 42.1 s(-)(1)). These data were obtained using a stopped-flow method, which included ascorbate in the reaction medium to maintain a low steady-state concentration of ABTS (pseudo-first-order conditions) and to minimize absorbance changes in the Soret region due to the accumulation of ABTS cation radicals. A steady-state kinetic analysis of the reaction confirmed that the reduction of HRPC compound II by this substrate is rate-limiting in the complete peroxidase cycle. The reaction of HRPC with o-diphenols has been investigated using a chronometric method that also included ascorbate in the assay medium to minimize the effects of nonenzymic reactions involving phenol-derived radical products. This enabled the initial rates of o-diphenol oxidation at different hydrogen peroxide and o-diphenol concentrations to be determined from the lag period induced by the presence of ascorbate. The kinetic analysis resolved the reaction of HRPC compound II with o-diphenols into two steps, initial formation of an enzyme-substrate complex followed by electron transfer from the substrate to the heme. With o-diphenols that are rapidly oxidized, the heterolytic cleavage of the O-O bond of the heme-bound hydrogen peroxide (k(+2) = 2.17 x 10(3) s(-)(1)) is rate-limiting. The size and hydrophobicity of the o-diphenol substrates are correlated with their rate of binding to HRPC, while the electron density at the C-4 hydroxyl group predominantly influences the rate of electron transfer to the heme.  相似文献   

12.
豆壳过氧化物酶的电子吸收光谱性质   总被引:1,自引:0,他引:1  
应用电子吸收光谱技术研究了豆壳过氧化物酶 ( EC1 .1 1 .1 .7)的不同氧化态电子吸收光谱 ,并与其它来源的过氧化物酶作了比较研究 .天然态酶的特征吸收峰位为 40 4 nm的 Soret带 ,638nm的α带和 50 8nm的β带 ,与过氧化氢反应可生成三类复合物 .复合物 ( Com )在 40 8、580、61 8和 655nm处出现特征吸收 ;复合物 ( Com )在 41 9、52 9和 556nm处显示特征吸收 ;复合物 ( Com )则于 41 8、543和 578nm处显示特征吸收 .天然态酶经连二亚硫酸钠还原则出现 435和 558nm的特征峰 ,与氰化钾作用在 42 2和 544nm处显示特征吸收 .氰化钾对该酶的抑制为竞争性抑制 ,其 Ki 值为 2 .4μmol/L.  相似文献   

13.
Kettle AJ  Winterbourn CC 《Biochemistry》2001,40(34):10204-10212
The predominant physiological activity of myeloperoxidase is to convert hydrogen peroxide and chloride to hypochlorous acid. However, this neutrophil enzyme also degrades hydrogen peroxide to oxygen and water. We have undertaken a kinetic analysis of this reaction to clarify its mechanism. When myeloperoxidase was added to hydrogen peroxide in the absence of reducing substrates, there was an initial burst phase of hydrogen peroxide consumption followed by a slow steady state loss. The kinetics of hydrogen peroxide loss were precisely mirrored by the kinetics of oxygen production. Two mols of hydrogen peroxide gave rise to 1 mol of oxygen. With 100 microM hydrogen peroxide and 6 mM chloride, half of the hydrogen peroxide was converted to hypochlorous acid and the remainder to oxygen. Superoxide and tyrosine enhanced the steady-state loss of hydrogen peroxide in the absence of chloride. We propose that hydrogen peroxide reacts with the ferric enzyme to form compound I, which in turn reacts with another molecule of hydrogen peroxide to regenerate the native enzyme and liberate oxygen. The rate constant for the two-electron reduction of compound I by hydrogen peroxide was determined to be 2 x 10(6) M(-1) s(-1). The burst phase occurs because hydrogen peroxide and endogenous donors are able to slowly reduce compound I to compound II, which accumulates and retards the loss of hydrogen peroxide. Superoxide and tyrosine drive the catalase activity because they reduce compound II back to the native enzyme. The two-electron oxidation of hydrogen peroxide by compound I should be considered when interpreting mechanistic studies of myeloperoxidase and may influence the physiological activity of the enzyme.  相似文献   

14.
The first complete mechanistic analysis of halide ion oxidation by a peroxidase was that of iodide oxidation by horseradish peroxidase. It was shown conclusively that a two-electron oxidation of iodide by compound I was occurring. This implied that oxygen atom transfer was occurring from compound I to iodide, forming hypoiodous acid, HOI. Searches were conducted for other two-electron oxidations. It was found that sulfite was oxidized by a two-electron mechanism. Nitrite and sulfoxides were not. If a competing substrate reduces some compound I to compound II by the usual one-electron route, then compound II will compete for available halide. Thus compound II oxidizes iodide to an iodine atom, I*, although at a slower rate than oxidation of I by compound I. An early hint that mammalian peroxidases were designed for halide ion oxidation was obtained in the reaction of lactoperoxidase compound II with iodide. The reaction was accelerated by excess iodide, indicating a co-operative effect. Among the heme peroxidases, only chloroperoxidase (for example from Caldariomyces fumago) and mammalian myeloperoxidase are able to oxidize chloride ion. There is not yet a consensus as to whether the chlorinating agent produced in a peroxidase-catalyzed reaction is hypochlorous acid (HOCl), enzyme-bound hypochlorous acid (either Fe-HOCl or X-HOCl where X is an amino acid residue), or molecular chlorine Cl2. A study of the nonenzymatic iodination of tyrosine showed that the iodinating reagent was either HOI or I2. It was impossible to tell which species because of the equilibria: [reaction: see text] The same considerations apply to product analysis of an enzyme-catalyzed reaction. Detection of molecular chlorine Cl2 does not prove it is the chlorinating species. If Cl2 is in equilibrium with HOCl then one cannot tell which (if either) is the chlorinating reagent. Examples will be shown of evidence that peroxidase-bound hypochlorous acid is the chlorinating agent. Also a recent clarification of the mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride along with accurate determination of the elementary rate constants will be discussed.  相似文献   

15.
Peroxidase from soybean seed coat (SBP) has properties that makes it particularly suited for practical applications. Therefore, it is essential to know its fundamental enzymatic properties. Stopped-flow techniques were used to investigate the pH dependence of the reaction of SBP and hydrogen peroxide. The reaction is linearly dependent on hydrogen peroxide concentration at acidic and neutral pH with the second order rate constant k(1)=2.0x10(7) M(-1) s(-1), pH 4-8. From pH 9.3 to 10.2 the reaction is biphasic, a novel observation for a peroxidase at alkaline pH. A fast reaction has the characteristics of the reaction at neutral pH, and a slow reaction shows hyperbolic dependence on hydrogen peroxide concentration. At pH >10.5 only the slow reaction is seen. The shift in mechanism is coincident with the change in haem iron co-ordination to a six-coordinate low spin hydroxy ligated alkaline form. The pK(a) value for the alkaline transition was observed at 9.7+/-0.1, 9.6+/-0.1 and 9.9+/-0.2 by spectrophotometric titration, the fast phase amplitude, and decrease in the apparent second order rate constant, respectively. An acidic pK(a) at 3.2+/-0.3 was also determined from the apparent second order rate constant. The reactions of soybean peroxidase compounds I and II with veratryl alcohol at pH 2.44 give very similar second order rate constants, k(2)=(2.5+/-0.1)x10(4) M(-1) s(-1) and k(3)=(2.2+/-0.1)x10(4) M(-1) s(-1), respectively, which is unusual. The electronic absorption spectra of compounds I, II and III at pH 7.07 show characteristic bands at 400 and 651 nm (compound I), 416, 527 and 555 nm (compound II), and 414, 541 and 576 nm (compound III). No additional intermediates were observed.  相似文献   

16.
I Morishima  S Ogawa 《Biochemistry》1978,17(21):4384-4388
Enzymatic reaction intermediates of horseradish peroxidase, compounds I and II, were studied by high-resolution nuclear magnetic resonance spectroscopy at 220 MHz. The heme peripheral proton peaks were successfully obtained in the downfield region of 50 to 80 ppm from 4,4-dimethyl-4-silapentane-5-sulfonate for compound I and of 10 to 20 ppm for compound II at pH 9.2. This indicates that no isoporphyrin appears in the catalytic cycle of the enzyme. Temperature dependences of the spectra also were determined for these compounds between 7 and 32 degrees C. With increasing temperature, all the peaks in the downfield region for compound I shifted upfield, obeying the Curie law. These results suggest that the Fe atoms in compounds I and II are in ferryl high- and low-spin states, respectively. The spectrum was also observed in solutions of horse metmyoglobin to which hydrogen peroxide (H2O2) was added. The electron formulations of the hemes in their spectra. Evidence was found against a pi-cation radical on the heme ring as a source of the oxidizing equivalent in compound I.  相似文献   

17.
The reaction of cytochrome c oxidase with hydrogen peroxide has been of great value in generating and characterizing oxygenated species of the enzyme that are identical or similar to those formed during turnover of the enzyme with dioxygen. Most previous studies have utilized relatively low peroxide concentrations (millimolar range). In the current work, these studies have been extended to the examination of the kinetics of the single turnover of the fully reduced enzyme using much higher concentrations of peroxide to avoid limitations by the bimolecular reaction. The flow-flash method is used, in which laser photolysis of the CO adduct of the fully reduced enzyme initiates the reaction following rapid mixing of the enzyme with peroxide, and the reaction is monitored by observing the absorbance changes due to the heme components of the enzyme. The following reaction sequence is deduced from the data. (1) The initial product of the reaction appears to be heme a(3) oxoferryl (Fe(4+)=O(2)(-) + H(2)O). Since the conversion of ferrous to ferryl heme a(3) (Fe(2+) to Fe(4+)) is sufficient for this reaction, presumably Cu(B) remains reduced in the product, along with Cu(A) and heme a. (2) The second phase of the reaction is an internal rearrangement of electrons and protons in which the heme a(3) oxoferryl is reduced to ferric hydroxide (Fe(3+)OH(-)). In about 40% of the population, the electron comes from heme a, and in the remaining 60% of the population, Cu(B) is oxidized. This step has a time constant of about 65 micros. (3) The third apparent phase of the reaction includes two parallel reactions. The population of the enzyme with an electron in the binuclear center reacts with a second molecule of peroxide, forming compound F. The population of the enzyme with the two electrons on heme a and Cu(A) must first transfer an electron to the binuclear center, followed by reaction with a second molecule of peroxide, also yielding compound F. In each of these reaction pathways, the reaction time is 100-200 micros, i.e., much faster than the rate of reaction of peroxide with the fully oxidized enzyme. Thus, hydrogen peroxide is an efficient trap for a single electron in the binuclear center. (4) Compound F is then reduced by the final available electron, again from heme a, at the same rate as observed for the reduction of compound F formed during the reaction of the fully reduced oxidase with dioxygen. The product is the fully oxidized enzyme (heme a(3) Fe(3+)OH(-)), which reacts with a third molecule of hydrogen peroxide, forming compound P. The rate of this final reaction step saturates at high concentrations of peroxide (V(max) = 250 s(-)(1), K(m) = 350 mM). The data indicate a reaction mechanism for the steady-state peroxidase activity of the enzyme which, at pH 7.5, proceeds via the single-electron reduction of the binuclear center followed by reaction with peroxide to form compound F directly, without forming compound P. Peroxide is an efficient trap for the one-electron-reduced state of the binuclear center. The results also suggest that the reaction of hydrogen peroxide to the fully oxidized enzyme may be limited by the presence of hydroxide associated with the heme a(3) ferric species. The reaction of hydrogen peroxide with heme a(3) is very substantially accelerated by the availability of an electron on heme a, which is presumably transferred to the binuclear center concomitant with a proton that can convert the hydroxide to water, which is readily displaced.  相似文献   

18.
Prostaglandin H synthase-1 (PGHS-1) is a bifunctional heme protein catalyzing both a peroxidase reaction, in which peroxides are converted to alcohols, and a cyclooxygenase reaction, in which arachidonic acid is converted into prostaglandin G2. Reaction of PGHS-1 with peroxide forms Intermediate I, which has an oxyferryl heme and a porphyrin radical. An intramolecular electron transfer from Tyr385 to Intermediate I forms Intermediate II, which contains two oxidants: an oxyferryl heme and the Tyr385 radical required for cyclooxygenase catalysis. Self-inactivation of the peroxidase begins with Intermediate II, but it has been unclear which of the two oxidants is involved. The kinetics of tyrosyl radical, oxyferryl heme, and peroxidase inactivation were examined in reactions of PGHS-1 reconstituted with heme or mangano protoporphyrin IX with a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid (15-HPETE), and ethyl hydrogen peroxide (EtOOH). Tyrosyl radical formation was significantly faster with 15-HPETE than with EtOOH and roughly paralleled oxyferryl heme formation at low peroxide levels. However, the oxyferryl heme intensity decayed much more rapidly than the tyrosyl radical intensity at high peroxide levels. The rates of reactions for PGHS-1 reconstituted with MnPPIX were approximately an order of magnitude slower, and the initial species formed displayed a wide singlet (WS) radical, rather than the wide doublet radical observed with PGHS-1 reconstituted with heme. Inactivation of the peroxidase activity during the reaction of PGHS-1 with EtOOH or 15-HPETE correlated with oxyferryl heme decay, but not with changes in tyrosyl radical intensity or EPR line shape, indicating that the oxyferryl heme, and not the tyrosyl radical, is responsible for the self-destructive peroxidase side reactions. Computer modeling to a minimal mechanism was consistent with oxyferryl heme being the source of peroxidase inactivation.  相似文献   

19.
Peroxidase (donor: H2O2 oxidoreductase [EC 1.11.1.7]) was purified from a culture broth of an inkcap Basidiomycete, Coprinus cinereus S.F. Gray. A single component containing a low amount of carbohydrate was isolated by affinity chromatography on concanavalin A-Sepharose and crystallized from ammonium sulfate solution. The enzyme is an acidic protein (pI 3.5) and consists of a single polypeptide chain having the molecular weight of 41,600 daltons. The enzyme contains one protohemin per molecule and exhibits the characteristic absorption, circular dichroism, and magnetic circular dichroism spectra of a heme-protein. The Coprinus peroxidase forms two characteristic intermediate compounds, I and II, and the rate constants for hydrogen peroxide and guaiacol had similar values to those for higher plant peroxidases. The ferric enzyme formed a cyanide compound with a dissociation constant similar to those for higher plant enzyme, but the dissociation constant of the ferrous enzyme-cyanide was large. The chemical composition of Coprinus peroxidase showed 381 amino acid residues, 1 glucosamine, 3 true sugars, 3 calcium, and 1 non-heme iron other than 1 protohemin. The secondary structure of the fungal enzyme was very similar to that of horseradish peroxidase.  相似文献   

20.
The reaction of Co(II)bleomycin with dioxygen has been investigated. Dioxygen binds to the Co(II) complex within the time of mixing according to electron spin resonance and uv-visible spectroscopy and dioxygen analysis. Then, two dioxygenated cobalt centers react, releasing 1 mol of O2 and forming an intermediate characterized by a few highly shifted 1H NMR resonances and loss of the ESR spectrum. This is thought to be a dioxygen-bridged dimer of cobalt bleomycin molecules. Time-dependent absorbance and dioxygen measurements yield the same second order rate constant for this step of the reaction. According to uv-visible and NMR spectral analysis, the intermediate decays into diamagnetic products in a first order rate process. High performance liquid chromatography and 1H NMR studies demonstrate that the product contains two bleomycin species of equal concentration. One component is Co(III)bleomycin, designated Form II. The other is the peroxide adduct of Co(III)bleomycin, Form I, as determined by direct determination of hydrogen peroxide, which is slowly released from the product at low pH. In contrast, hydrogen peroxide is readily detected during the reaction of Co(II)Blm with O2. In isolation, Form I is unstable at pH 7 and is converted within 24 h into a mixture of Form I and Form II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号