首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Carbohydrates (CHO) such as fructose (FR) or sucrose, but not starch (ST), aggravate the consequences of dietary copper (Cu) deficiency in rats. To evaluate whether this Cu X CHO interaction is pertinent to human health, the pig was used as an animal model. In two studies, 66 weanling pigs were fed dried skim milk (DSM)-based diets for 10 wk with 20% of the total calories provided as either FR, glucose, or ST and containing either deficient (1.0-1.3 micrograms/g diet) or adequate (7.1 micrograms/g) levels of Cu. Plasma and tissue levels of Cu, the activities of plasma ceruloplasmin ferroxidase and erythrocyte Cu, Zn-superoxide dismutase, and hematocrits were lower (p less than 0.05) in animals fed Cu-deficient diets. The relative cardiac mass of all Cu-deficient groups was greater (p less than 0.05) than that of animals fed Cu-adequate diets. These effects were in general unaffected by type of CHO. For comparison, weaned male rats were also fed DSM-based containing diets ST or FR with adequate or deficient Cu for as long as 10 wk. Rats consuming the Cu-deficient diets were characterized by significantly lower hematocrits, decreased tissue Cu levels, and enlarged hearts, regardless of the CHO source. Together, these data demonstrate that DSM-based diets are not suitable for delineation of potential Cu X CHO interactions, and one or more components of DSM may exacerbate the consequences of dietary Cu deficiency.  相似文献   

2.
Dietary copper deficiency has been shown to significantly reduce acetylcholine (Ach)-induced vascular smooth muscle relaxation. The current study was designed to examine the relative relationship between dietary copper and the vasodilator response to Ach in the microcirculation of the rat. Male weanling rats were fed a purified basal diet supplemented with 6.0, 3.0, 1.5 or 0.0 microg Cu/g diet for 4 weeks to provide an adequate, two marginal, and deficient intakes of dietary copper. Arteriole dilation in response to increasing concentrations of acetylcholine (10(-7) to 10(-4) M) was measured in the in vivo cremaster muscle microcirculation for each dietary group. Liver copper and both aortic and erythrocyte Cu,Zn-SOD activity were used as indices of systemic copper status. Dilation to the increasing concentrations of Ach was only different in the 0 microg Cu supplemented group compared to the copper-adequate control values. However, the combined results showed an exponential increase in 10(-5) M Ach-induced vasodilation as liver copper concentration increases from 0 microg Cu/g dry wt. This relationship suggests that dilation is attenuated at liver Cu concentrations below 5 microg/g dry wt. The results indicate that Ach-induced vasodilation is copper-dependent but that the pathway is not very sensitive to short-term marginal restriction of copper intake.  相似文献   

3.
Four experiments were done to characterize the interactions of copper, iron, and ascorbic acid with manganese in rats. All experiments were factorially arranged Dietary Mn concentrations were less than 1 micrograms/g (Mn0) and 50 micrograms/g (Mn+). Dietary Cu was less than 1 mg/g (Cu0) and 5 micrograms/g (Cu+); dietary Fe was 10 micrograms/g (Fe10) and 140 micrograms/g (Fe140). Ascorbic acid (Asc) was not added to the diet or added at a concentration of 10 g/kg diet. Experiment 1 had two variables, Mn and Cu; in Experiment 2, the variables were Mn and Asc. In Experiment 3, the variables were Mn, Cu, and Asc; in Experiment 4, they were Mn, Cu, and Fe. Definite interactions between Mn and Cu were observed, but they tended to be less pronounced than interactions between Mn and Fe. Cu depressed absorption of 54Mn and accelerated its turnover. In addition, adequate Cu (Cu+), compared with Cu0, depressed liver, plasma, and whole blood Mn of rats. Absorption of 67Cu was higher in animals fed Mn0 diets than in those fed Mn+. Ascorbic acid depressed Mn superoxide dismutase activity and increased Cu superoxide dismutase activity in the heart. The addition of ascorbic acid to the diet did not affect Mn concentration in the liver or blood. Absorption of 54Mn was depressed in rats fed Fe140 compared with those fed Fe10. Interactions among Fe, Cu, and Mn resulted in a tendency for Mn superoxide dismutase activity to be lower in rats fed Fe140 than in rats fed Fe10. Within the physiologic range of dietary concentrations, Mn and Cu have opposite effects on many factors that tend to balance one another. The effects of ascorbic acid on Mn metabolism are much less pronounced than effects of dietary Cu, which in turn affects Mn metabolism less than does Fe.  相似文献   

4.
Impaired deformability of copper-deficient neutrophils   总被引:1,自引:0,他引:1  
We have previously shown that dietary copper deficiency augments neutrophil accumulation in the lung microvasculature. The current study was designed to determine whether a diet deficient in copper promotes neutrophil chemoattraction within the lung vasculature or if it alters the mechanical properties of the neutrophil, thus restricting passage through the microvessels. Sprague-Dawley rats were fed purified diets that were either copper adequate (6.3 microg Cu/g diet) or copper deficient (0.3 microg Cu/g diet) for 4 weeks. To assess neutrophil chemoattraction, bronchoalveolar lavage fluid was assayed for the neutrophil chemokine macrophage inflammatory protein-2 (MIP-2) by enzyme-linked immunosorbent assay. Neutrophil deformability was determined by measuring the pressure required to pass isolated neutrophils through a 5-microm polycarbonate filter. The MIP-2 concentration was not significantly different between the dietary groups (Cu adequate, 435.4 +/- 11.9 pg/ml; Cu deficient, 425.6 +/- 14.8 pg/ml). However, compared with controls, more pressure was needed to push Cu-deficient neutrophils through the filter (Cu adequate, 0.150 +/- 0.032 mm Hg/sec; Cu deficient, 0.284 +/- 0.037 mm Hg/sec). Staining of the filamentous actin (F-actin) with FITC-Phalloidin showed greater F-actin polymerization and shape change in the Cu-deficient group. These results suggest that dietary copper deficiency reduces the deformability of neutrophils by promoting F-actin polymerization. Because most neutrophils must deform during passage from arterioles to venules in the lungs, we propose that copper-deficient neutrophils accumulate in the lung because they are less deformable.  相似文献   

5.
Dietary zinc deficiency decreases plasma concentrations of vitamin E   总被引:1,自引:0,他引:1  
Experiments were conducted to examine the effects of dietary zinc (Zn) upon plasma vitamin E (E) concentrations to test the hypothesis that there may be a significant dietary interaction between these two nutrients. Weanling female Sprague-Dawley rats were fed diets that were (i) Zn-deficient (less than 0.9 micrograms Zn/g diet) ad libitum; (ii) Zn-adequate (50.9 micrograms Zn/g diet), pair-fed to the Zn-deficient group; and (iii) Zn-adequate (50.9 micrograms Zn/g diet) ad libitum. Plasma E in Zn-deficient animals (4.02 +/- 1.20 micrograms/ml) was significantly reduced (P less than or equal to 0.05) compared with results in both Zn-adequate pair-fed (9.21 +/- 0.70 micrograms/ml) and Zn-adequate ad libitum-fed (9.47 +/- 0.90 micrograms/ml) animals. Zn deficiency in this model system also resulted in significant (P less than or equal to 0.05) reductions in femur and plasma Zn concentrations as well as in plasma retinol, plasma triglyceride, and plasma cholesterol concentrations. Plasma albumin and total plasma protein concentrations were normal in Zn-deficient animals. With dietary Zn deficiency, the decrease in plasma E appeared to be out of proportion to associated decreases in plasma triglyceride and plasma cholesterol concentrations. Since E is associated with plasma lipoproteins, these data suggest that lipid and/or E malabsorption may be a consequence of Zn deficiency. In response to increased dietary intake of E, increments of plasma E were lower in Zn-depleted than in Zn-adequate, pair-fed animals. These findings suggest that dietary Zn deficiency possibly may increase the nutritional requirement for E necessary to maintain adequate plasma concentrations.  相似文献   

6.
Because zinc (Zn) is an important component for cell protection against certain oxygen species, it has been suggested that Zn deficiency impairs the potent oxidant defense capacity, which is constitutively provided in the vascular system. However, the influence of dietary Zn deficiency on systemic blood pressure and vascular system is controversial and unclear. We therefore examine the effect of dietary Zn deficiency on systemic blood pressure, a potent superoxide scavenger, aortic Cu/Zn superoxide dismutase (SOD) activity, a most representative synthase of the endothelium-derived relaxing factor, and aortic endothelial nitric oxide synthase (eNOS) expression. Furthermore, the direct effects of intravenous administration of NOS inhibitor, N ω-nitro-l-arginine methyl ester (l-NAME), and a SOD mimetic compound, tempol, in normotensives were tested in Wistar-Kyoto (WKY) rats. A Zn-deficient diet (4 wk) contributed to growth retardation, the decrease in thymus weight, and the lower levels of serum Zn compared with the standard diet group. However, no significant difference in conscious systolic and diastolic blood pressure was found in the Zn-deficiency group. The administration of l-NAME caused an increase in the mean arterial pressure (MAP) levels in the two groups of rats and the involvement of the vasodilator nitric oxide (NO) in the regulation of systemic BP in the normotensive state. On the other hand, administration of the superoxide scavenger, tempol, led to a decrease in MAP levels in the two groups of rats, indicating the participation of the oxygen free radical, superoxide, in the maintenance of the systemic BP in a normotensive state. There were no significant differences between the Zn-deficient diet group and the standard diet group in the normotensive state. eNOS expression and Cu/Zn SOD activity in the aorta were also intact in Zn-deficient normotensive rats. These findings suggest that the 4 wk of Zn deficiency was inadequate to alter systemic blood pressure and focal NO signaling in the normotensive state. Long-term Zn deficiency affects the neuronal, immune, and hematopoietic systems, which contribute to systemic and/or local circulation. However, Zn deficiency alone does not cause hypertension and local vascular dysfunction in the normotensive state.  相似文献   

7.
Copper is an essential trace element in the maintenance of the cardiovascular system. Copper-deficient diets can elicit, in animals, structural and functional changes that are comparable to those observed in coronary heart disease. In this study, the effect of dietary-induced copper deficiency on aortic lesion development was measured by quantitative image analysis in C57BL/6 mice that are susceptible to diet-induced aortic lesions. The diets administered were severely copper deficient (0.2 mg/kg diet), marginally deficient (0.6 mg/kg diet), or copper adequate (6.0 mg/kg diet). Similarly, increased aortic lesion areas and elevated serum cholesterol were demonstrated in both deficient groups, compared with the copper-adequate group. Evidence for graded differences in copper status among the dietary groups was shown by the dose-response increase in liver copper concentration, copper-zinc superoxide dismutase and cytochrome-c oxidase activities, together with serum caeruloplasmin oxidase with increasing intakes of dietary copper. Despite the difference in copper status between the copper marginal and severely deficient groups, similar lesions found in both groups of mice suggest a threshold effect of copper deficiency on lesion formation.  相似文献   

8.
Dietary copper-deficient guinea pig dams (0.8 microgram Cu/g diet) were administered oxytocin to induce delivery of pups, whereas dietary copper-sufficient guinea pig dams (5.8 micrograms Cu/g diet) had uneventful deliveries with 79% surviving pups. The copper-deficient dams carried the fully-formed fetuses to term but did not go into labor unless 0.5 to 6.2 U oxytocin was administered (i.m.). Birth of live pups from copper-deficient dams increased from 28% overall, to 50% if oxytocin was administered in a timely manner. Many pups died of internal hemorrhages probably the result of defective connective tissue crosslinks requiring copper as a co-factor for lysyl oxidase activity. Dietary copper deficiency may be a factor in depressed parturition in the copper-deficient guinea pig dam that responds to administration of exogenous oxytocin for delivery of pups.  相似文献   

9.
Cu2Zn2-superoxide dismutase (CuZn-SOD) was purified from chicken liver. The liver enzyme had a subunit Mr of 16900 and contained equimolar amounts of copper and zinc [0.26% (w/w) for each]. Aortic CuZn-SOD had the same Mr as estimated by gel filtration and cross-reacted with antibodies to the liver enzyme. Both enzymes were inhibited by 1.0 mM-NaCN. Within 24-72 h after hatching, total SOD activity in aorta rose 3-fold over the day-1 level and stayed elevated for 10 days. With low dietary copper, the total SOD activity rose as before, but then decayed progressively to non-detectable levels in 10 days. Both the cyanide-sensitive (CuZn-SOD) and insensitive (mangano-SOD) activities fell, but not at the same rate. When the 10-day-old deficient chicks were injected with 0.5 mumol of CuSO4 intraperitoneally, SOD activity in aorta was restored to control levels in about 8 h. Despite non-measurable SOD activity in aorta, extracts from the 15-day-old-deficient-chick tissue contained as much, or slightly more, immunoreactive CuZn-SOD protein as age-matched control tissue. The data show clearly that dietary copper regulates SOD activity in the aortas of young developing animals. They further suggest that a copper deficiency suppresses CuZn-SOD activity without inhibiting synthesis or accumulation of the CuZn protein in this tissue.  相似文献   

10.
The present study was designed to determine whether the supplementation of vitamin E in the copper-deficient diet would ameliorate the severity of copper deficiency in fructose-fed rats. Lipid peroxidation was measured in the livers and hearts of rats fed a copper-deficient diet (0.6 microg Cu/g) containing 62% fructose with adequate vitamin E (0.1 g/kg diet) or supplemented with vitamin E (1.0 g/kg diet). Hepatic lipid peroxidation was significantly reduced by vitamin E supplementation compared with the unsupplemented adequate rats. In contrast, myocardial lipid peroxidation was unaffected by the level of vitamin E. Regardless of vitamin E supplementation, all copper-deficient rats exhibited severe signs of copper deficiency, and some of the vitamin E-supplemented rats died of this deficiency. These findings suggest that although vitamin E provided protection against peroxidation in the liver, it did not protect the animals against the severity of copper deficiency induced by fructose consumption.  相似文献   

11.
The present study was undertaken to measure the activities of several hepatic enzymes of regulatory importance in the pathways of lipogenesis and gluconeogenesis in rats fed diets marginally deficient in copper (1.2 micrograms Cu/g of diet) and containing either fructose, glucose, or starch as the carbohydrate sources. Although all copper-deficient rats exhibited the characteristic signs of copper deficiency, they were more pronounced in rats fed the diet containing fructose. Except for the activity of phosphoenolpyruvate carboxykinase which was unaffected either by copper deficiency or by the type of dietary carbohydrate, the hepatic activities of glucose-6-phosphate dehydrogenase, malic enzyme, L-alpha-glycerophosphate dehydrogenase and fructose 1,6-diphosphatase were unaffected by copper deficiency but were affected by the type of carbohydrate in the diet. Fructose produced the greatest increase in enzymatic activities, whereas starch produced the least activity and glucose induced an intermediate effect. These results indicate that the deleterious effects of a fructose diet deficient in copper on biochemical and physiological indices could not be due to an immediate metabolite of fructose. However, the involvement of a subsequent metabolite of fructose in the mechanism of copper utilization and/or requirement cannot be excluded.  相似文献   

12.
Low dietary copper has been shown to decrease the expression of various protein kinase C (PKC) isozymes and increase the risk of colon cancer development in experimental animals. The purpose of this study was to investigate the relationship between dietary copper and carcinogen administration on PKC isozyme accumulation and aberrant crypt foci (ACF) formation in rats fed 0.9 and 7.7 microg Cu/g diet. After 24 and 31 d on the diets, the rats were injected with either dimethylhydrazine (DMH) (25 mg/kg i.p.) or saline and killed at two time points (2 wk and 8 wk after DMH). Rats fed low dietary copper had significantly lower (p<0.0001) hematocrits, hemoglobin, ceruloplasmin activity and plasma and liver copper concentrations than rats fed adequate dietary copper. Ingestion of low dietary copper significantly (p<0.005) increased the formation of DMH-induced ACF (116.8 vs 59.6). Low dietary copper significantly (p<0.05) decreased the concentration of PKC alpha, delta, and zeta in the colon at 2 wk but not at 8 wk. Thus, changes in PKC isoform protein concentration may be related to increased susceptibility of copper-deficient animals to colon cancer.  相似文献   

13.
在饲料中添加0、30和50 mg Cu/kg饲料的蛋氨酸铜,投喂凡纳滨对虾(Litopenaeus vannamei)7、14和21d,检测对虾体组织铜蓄积、免疫相关基因(Toll受体mRNA和溶菌酶mRNA)表达水平和免疫抗菌能力的变化。结果表明:凡纳滨对虾肝胰腺铜含量随着饲料蛋氨酸铜添加量增加及投喂时间延长而显著增加(P0.05);对虾肌肉的铜含量显著低于肝胰腺的铜含量。饲料中铜水平对凡纳滨对虾肌肉、血淋巴及肝胰腺中溶菌酶活性无显著影响(P0.05)。对虾组织SOD活性因饲料中铜水平和投喂时间变化显著,添加30 mgCu/kg组对虾肌肉、血淋巴和肝胰腺中SOD活性在第21天时显著高于其他两组(P0.05)。饲料中铜水平对凡纳滨对虾鳃组织中溶菌酶mRNA表达水平无显著影响,但显著影响鳃组织Toll受体mRNA表达水平(P0.05)。第7天时凡纳滨对虾Toll受体mRNA表达水平随着饲料铜水平升高而显著升高(P0.05);第14和第21天时,Toll受体mRNA表达水平在摄食添加30 mg Cu/kg组最高。人工急性感染溶藻弧菌(Vibrioalginolyticus)实验表明,第7天时,摄食添加50 mg Cu/kg组凡纳滨对虾全致死时间和半致死时间长于未添加铜组和添加30 mgCu/kg组,但在第14天,摄食添加30 mg Cu/kg组的全致死时间和半致死时间最长。研究表明饲料铜添加水平不但影响组织中铜的蓄积,还影响凡纳滨对虾SOD活性和Toll受体mRNA表达水平,从而影响机体的抗弧菌能力。  相似文献   

14.
15.
Copper deficiency was induced in weanling rats fed diets whose sole source of carbohydrates was starch or fructose for 7 weeks. Conventional parameters of copper status, plasma copper concentrations, ceruloplasmin activity, and erythrocyte superoxide dismutase (SOD) activity were longitudinally monitored weekly to follow the development of the deficiency and to correlate these indices with the degree of severity of the deficiency. Although 30% of the rats fed a copper-deficient fructose diet died and no deaths occurred in rats fed the copper-deficient starch diet, plasma copper, ceruloplasmin, and SOD activities were reduced to a similar extent in all rats fed copper-deficient diets regardless of the type of dietary carbohydrate. Thus, none of the indices used accurately reflected the greater degree of deficiency or mortality in rats fed the fructose diet deficient in copper. The results of the present study underscore the need for more sensitive tests or alternative parameters to assess copper status in living animals.  相似文献   

16.
The effect of moderately high dietary zinc (Zn) on the activities of plasma (PL) ceruloplasmin (CP), and PL and erythrocyte (RBC) copper (Cu), Zn superoxide dismutase (SOD) was determined in weanling rats fed Cu-deficient (DEF; <1 mg Cu/kg), marginal (MAR; 2 mg Cu/kg), or control (CON; 5 mg Cu/kg) copper diets containing normal or high Zn (HZn; 60 mg/kg) for 4 wk and supplemented with oral Cu (CuS; 5 mg/L) in drinking water for 0, 1, 3, or 7 d. PL Cu decreased (67% compared to CON;p≤0.05) in the DEF and increased to control level after 3 d of CuS; increased in the MAR group after 1 d of CuS. HZn reduced overall PL Cu by 27% in all groups, but did not alter the linear increase in PL Cu between 0 and 3 d of Cu S. PL CP activity altered concomitantly with PL Cu levels: The time course of increase in CP activity after 0–3 d of CuS was not influenced by HZn in the diet and CP declined in the DEF group by 92%. There was no correlation between dietary Cu level and PL CP. PL SOD activity decreased by 46% (p≤.05) in the DEF group, increased to control activity after 1 d of CuS and declined slighty after 7 d; MAR diet did not alter PL SOD. HZn diet increased PL SOD activity in all groups by 150%, reduced activity in the DEF and MAR groups by 65 and 37% and delayed the recovery of PL SOD after CuS. RBC SOD declined in the DEF and MAR groups by 56 and 33% (p≤0.05) and did not respond to CuS; HZn diet did not influence RBC SOD activity. These data indicate that moderately high Zn in the diet reduces PL Cu, but not PL CP activity or the recovery of PL Cu or CP activity after oral CuS of Cu-deficient rats, modifies the response of PL SOD to dietary Cu, but does not influence RBC SOD activity.  相似文献   

17.
An in vitro model was designed to study the role of ischemia/reperfusion and oxygen free radicals on vascular prostacyclin (PGI2) synthesis and protection provided by superoxide dismutase (SOD). Cultured bovine aortic endothelial cells (BAEC) were subjected to various times of hypoxia (30 min to 5 h) followed by 30 min reoxygenation. An increase or a decrease in PGI2 synthesis capacity was then observed according to the duration of hypoxia. Inhibition of PGI2 synthesis after 5 h hypoxia/30 min reoxygenation was accompanied by a rise in lipoperoxidation products and a slight cytotoxicity. Superoxide anion could be implicated in these cellular alterations as SOD efficiently prevented these effects. Incubation of normoxic or H/R-treated BAEC with SOD led to an increase in cellular SOD activity as compared to controls. This increase, inhibited by incubation at 4 degrees C but not by addition of cycloheximide, strongly suggested endocytosis of SOD. This study emphasizes the role of endothelium as a source and target of free radicals and provides a new insight into the mechanism of protection by SOD in ischemia-related vascular pathology.  相似文献   

18.
Sensitivity of the assay for Cu,Zn superoxide dismutase 3 (SOD3), the predominant form of SOD in serum, can be increased, and interferences caused by low-molecular-weight substances in the serum can be reduced by conducting the assay at pH 10 with xanthine/xanthine oxidase and acetylated cytochrome c (cyt c) as superoxide generator and detector, respectively. Serum SOD3 activity was assayed under these conditions in an experiment where weanling, male rats were fed diets for 6 weeks containing 3, 5 and 15 mg Zn/kg with dietary Cu set at 0.3, 1.5 and 5 mg Cu/kg at each level of dietary Zn. Serum SOD3 responded to changes in dietary Cu but not to changes in dietary Zn. A second experiment compared serum SOD3 activity to traditional indices of Cu status in weanling, male and female rats after they were fed diets containing, nominally, 0, 1, 1.5, 2, 2.5, 3 and 6 mg Cu/kg for 6 weeks. Serum SOD3 activity was significantly lower (P < .05) in male rats fed diets containing 0 and 1 mg Cu/kg and female rats fed diet containing 0 mg Cu/kg compared with rats fed diet containing 6 mg Cu/kg. These changes were similar to changes in liver Cu concentrations, liver cyt c oxidase (CCO) activity and plasma ceruloplasmin in males and females. Serum SOD3 activity was also strongly, positively correlated with liver Cu concentrations over the entire range of dietary Cu concentrations (R(2) = .942 in males, R(2) = .884 in females, P < .0001). Plots of serum SOD3 activity, liver Cu concentration, liver CCO activity and ceruloplasmin as functions of kidney Cu concentration all had two linear segments that intersected at similar kidney Cu concentrations (18-22 microg/g dry kidney in males, 15-17 microg/g dry kidney in females). These findings indicate that serum SOD3 activity is a sensitive index of Cu status.  相似文献   

19.
Gastric mucosal damage was produced by the intragastric administration of 96% ethanol or 0.6 M HCl. The cytoprotective doses of prostacyclin (PGI2) (5 micrograms/kg), atropine (0.025 mg/kg) or cimetidine (2.5 mg/kg) were given intraperitoneally 30 min before the administration of the necrotizing agents. The animals were killed 1 hr later. The number and severity of gastric mucosal lesions (ulcer) were recorded. At the time of the sacrifice of the animals, superoxide dismutase (SOD) was prepared from the gastric fundic mucosa and its activity was measured. It was found that PGI2 (5 micrograms/kg), atropine (0.025 mg/kg) and cimetidine (2.5 mg/kg) significantly decreased the number and severity of gastric mucosal lesions (ulcers) produced by the intragastric administration of 96% ethanol a 0.6 M HCl, PGI2, atropine, cimetidine, given in cytoprotective doses, significantly mounted the ethanol-induced increase of gastric mucosal SOD activity; PGI2, atropine, cimetidine, given them in cytoprotective doses significantly shunted the HCl-induced decrease of gastric mucosal SOD activity. It has been concluded that; chemically different cytoprotective agents (PGI2, atropine, cimetidine) give rise to similar tendencies in the changes of gastric mucosal SOD activity; both the significant decrease (in the ethanol-model) and the significant increase (in the HCl-model) of this enzyme seem to be involved in the development of gastric mucosal protection by PGI2, atropine and cimetidine.  相似文献   

20.
The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 μg/g) and five levels of zinc (1, 4.5, 10, 100, 1000 μg/g) for 42 d. In rats fed the low copper diet, as dietary zinc concentration increased, the level of copper decreased in brain, testis, spleen, heart, liver, and intestine. There was no significant effect of dietary copper on tissue zinc levels. In the zinc-deficient groups, the level of iron was higher in most tissues than in tissues from controls (5 μg Cu, 100 μg Zn/g diet). In the copper-deficient groups, iron concentration was higher than control values only in the liver. These data show that dietary zinc affected tissue copper levels primarily when dietary copper was deficient, that dietary copper had no effect on tissue zinc, and that both zinc deficiency and copper deficiency affected tissue iron levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号