首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study applied MARXAN to identify cost-efficient areas for biodiversity protection, within the Thy National Park in Denmark. Public authorities have requested a more systematic approach to managing public land, which identifies cost-effective solutions and potential trade-offs between economic cost and biodiversity benefits. The aim of this study was to support the local management staff in setting conservation targets and prioritizing their management efforts. This was addressed through the creation of two primary scenarios: i) applying uniform conservation targets to all biodiversity features, and ii) heterogeneous targets addressing various degrees of conservation importance. Four sub-scenarios were established for each primary scenario to investigate the implications of various conservation targets on conservation cost. Local data on red-listed species and habitat types were used to assess biodiversity benefits. Detailed cost estimates of required conservation actions were included. The results indicated that scenarios with uniform conservation targets provided more flexible networks of protected areas but contributed less to target achievement and a smaller share of selected planning units overlapped with current protected areas. Applying heterogeneous targets based on threat status resulted in a higher degree of target achievement and compactness, but provided less flexible networks. However, these networks may be more suitable for efficient management due to a higher level of clustering and spatial overlap with threatened species distributions.  相似文献   

2.
Understanding the vulnerability of tree species to anthropogenic threats is important for the efficient planning of restoration and conservation efforts. We quantified and compared the effects of future climate change and four current threats (fire, habitat conversion, overgrazing and overexploitation) on the 50 most common tree species of the tropical dry forests of northwestern Peru and southern Ecuador. We used an ensemble modelling approach to predict species distribution ranges, employed freely accessible spatial datasets to map threat exposures, and developed a trait‐based scoring approach to estimate species‐specific sensitivities, using differentiated trait weights in accordance with their expected importance in determining species sensitivities to specific threats. Species‐specific vulnerability maps were constructed from the product of the exposure maps and the sensitivity estimates. We found that all 50 species face considerable threats, with an average of 46% of species’ distribution ranges displaying high or very high vulnerability to at least one of the five threats. Our results suggest that current levels of habitat conversion, overexploitation and overgrazing pose larger threats to most of the studied species than climate change. We present a spatially explicit planning strategy for species‐specific restoration and conservation actions, proposing management interventions to focus on (a) in situ conservation of tree populations and seed collection for tree planting activities in areas with low vulnerability to climate change and current threats; (b) ex situ conservation or translocation of populations in areas with high climate change vulnerability; and (c) active planting or assisted regeneration in areas under high current threat vulnerability but low climate change vulnerability, provided that interventions are in place to lower threat pressure. We provide an online, user‐friendly tool to visualize both the vulnerability maps and the maps indicating priority restoration and conservation actions.  相似文献   

3.
Global conservation priorities have often been identified based on the combination of species richness and threat information. With the development of the field of systematic conservation planning, more attention has been given to conservation costs. This leads to prioritizing developing countries, where costs are generally low and biodiversity is high. But many of these countries have poor governance, which may result in ineffective conservation or in larger costs than initially expected. We explore how the consideration of governance affects the selection of global conservation priorities for the world's mammals in a complementarity-based conservation prioritization. We use data on Control of Corruption (Worldwide Governance Indicators project) as an indicator of governance effectiveness, and gross domestic product per capita as an indicator of cost. We show that, while core areas with high levels of endemism are always selected as important regardless of governance and cost values, there are clear regional differences in selected sites when biodiversity, cost or governance are taken into account separately. Overall, the analysis supports the concentration of conservation efforts in most of the regions generally considered of high priority, but stresses the need for different conservation approaches in different continents owing to spatial patterns of governance and economic development.  相似文献   

4.
Questions: Is plant species richness, diversity and above‐ground standing biomass enhanced after establishing exclosures on communal grazing lands? What factors influence the effectiveness of exclosures to restore degraded native vegetation in Tigray, Ethiopia? Location: Northern Ethiopia. Methods: We used a space‐for‐time substitution approach to detect changes in plant species richness, diversity and above‐ground standing biomass after conversion of communal grazing lands to exclosures. We selected replicated (n=3) 5‐, 10‐, 15‐ and 20‐year‐old exclosures and paired each exclosure with an adjacent communal grazing land to ensure that soil and terrain conditions were as similar as possible among each pair. Results: All exclosures displayed higher plant species richness, diversity and biomass than the communal grazing lands. Differences in plant species richness and biomass between an exclosure age and adjacent communal grazing land were higher in oldest than in youngest exclosures. In exclosures, much of the variability in plant species composition and biomass was explained by a combination of edaphic (total nitrogen, phosphorus, texture and soil pH) and site (precipitation and altitude) variables (R2=0.72–0.82). Edaphic and site variables also explained much of the variability in plant species composition in communal grazing lands (R2=0.76–0.82). Our study shows that all exclosures are at an early stage of succession. The increase in economically important indigenous shrub and tree species with exclosure age suggests that, with time, a valuable afromontane forest may develop. Conclusions: Establishment of exclosures on communal grazing lands is a viable option to restore degraded native vegetation. However, before expanding exclosures, the ecological consequences of additional exclosures should be investigated as further expansion of exclosures could increase grazing pressure on remaining grazing areas. Furthermore, consideration of edaphic and site variables will help optimize selection of areas for establishment of exclosures and enhance natural regeneration in exclosures in the future.  相似文献   

5.
The conservation of biodiversity within tropical forest regions does not lie only in the maintenance of natural forest areas, but on conservation strategies directed toward agricultural land types within which they are embedded. This study investigated variations in bird assemblages of different functional groups of forest‐dependent birds in three agricultural land types, relative to distance from the interior of 34 tropical forest patches of varying sizes. Point counts were used to sample birds at each study site visited. Data from counts were used to estimate species richness, species evenness, and Simpson's diversity of birds. Mean species richness, evenness, and diversity were modeled as responses and as a function of agricultural land type, distance from the forest interior and three site‐scale vegetation covariates (density of large trees, fruiting trees, and patch size) using generalized linear mixed‐effect models. Mean observed species richness of birds varied significantly within habitat types. Mean observed species richness was highest in forest interior sites while sites located in farm centers recorded the lowest mean species richness. Species richness of forest specialists was strongly influenced by the type of agricultural land use. Fallow lands, density of large trees, and patch size strongly positively influenced forest specialists. Insectivorous and frugivorous birds were more species‐rich in fallow lands while monoculture plantations favored nectarivorous birds. Our results suggest that poor agricultural practices can lead to population declines of forest‐dependent birds particularly specialist species. Conservation actions should include proper land use management that ensures heterogeneity through retention of native tree species on farms in tropical forest‐agriculture landscapes.  相似文献   

6.
Vegetation surveys were carried out at 24 sampling stations distributed over four land use types, namely near-primary forest, secondary forest, agroforestry systems and annual crop lands in the northeastern part of the Korup region, Cameroon, to assess the impact of forest conversion on trees and understorey plants. Tree species richness decreased significantly with increasing level of habitat modification, being highest and almost equal in secondary and near-primary forests. Understorey plant species richness was significantly higher in annual crop lands than in other land use types. The four land use types differed in tree and understorey plant species composition, the difference being smaller among natural forests. Tree and understorey plant density differed significantly between habitat types. Density was strongly correlated with species richness, both for trees and understorey plants. Five tree and 15 understorey plant species showed significant responses to habitat. A 90% average drop in tree basal area from forest to farmland was registered. Our findings support the view that agroforestry systems with natural shade trees can serve to protect many forest species, but that especially annual crop lands could be redesigned to improve biodiversity conservation in agricultural landscapes of tropical rainforest regions.  相似文献   

7.
Biodiversity targets, or estimates of the quantities of biodiversity features that should be conserved in a region, are fundamental to systematic conservation planning. We propose that targets for species should be based on the quantitative thresholds developed for the Vulnerable category of the IUCN Red List system, thereby avoiding future listings of species in an IUCN Red List threat category or an increase in the extinction risk, or ultimate extinction, of species already listed as threatened. Examples of this approach are presented for case studies from South Africa, including threatened taxa listed under the IUCN Red List criteria of A to D, a species listed as Near Threatened, a species of conservation concern due to its rarity, and one species in need of recovery. The method gives rise to multiple representation targets, an improvement on the often used single representation targets that are inadequate for long term maintenance of biodiversity or the arbitrary multiple representation and percentage targets that are sometimes adopted. Through the implementation of the resulting conservation plan, these targets will ensure that the conservation status of threatened species do not worsen over time by qualifying for higher categories of threat and may actually improve their conservation status by eliminating the threat of habitat loss and stabilizing population declines. The positive attributes ascribed to the IUCN Red List system, and therefore to the species targets arising from this approach, are important when justifying decisions that limit land uses known to be detrimental to biodiversity.  相似文献   

8.
The effectiveness of conservation plans depends on environmental, ecological, and socioeconomic factors. Global change makes conservation decisions even more challenging. Among others, the components of most concern in modern‐day conservation assessments are as follows: the magnitude of climate and land‐use changes; species dispersal abilities; competition with harmful socioeconomic activities for land use; the number of threatened species to consider; and, relatedly, the available budget to act. Here, we provide a unified framework that quantifies the relative effects of those factors on conservation. We conducted an area‐scheduling work plan in order to identify sets of areas along time in which the persistence expectancies of species are optimized. The approach was illustrated using data of potential distribution of ten nonvolant mammal species in Iberia Peninsula from current time up to 2080. Analyses were conducted considering possible setups among the factors that are likely to critically impact conservation success: three climate/land‐use scenarios; four species’ dispersal kernel curves; six land‐use layer types; and two planning designs, in which assessments were made independently for each species, or joining all species in a single plan. We identified areas for an array of investments levels capable to circumvent the spatial conflicts with socioeconomic activities. The effect of each factor on the estimated species persistence scores was assessed using linear mixed models. Our results evidence that conservation success is highly reliant on the resources available to abate land‐use conflicts. Nonetheless, under the same investment levels, planning design and climate change were the factors that most shaped species persistence scores. The persistence of five species was especially affected by the sole effect of planning design and consequently, larger conservation investments may retard climatic debts. For three species, the negative effects of a changing climate and of multiple‐species planning designs added up, making these species especially at risk. Integrated assessments of the factors most likely to limit species persistence are pivotal to achieve effectiveness.  相似文献   

9.
Cox RL  Underwood EC 《PloS one》2011,6(1):e14508
Mediterranean-type ecosystems constitute one of the rarest terrestrial biomes and yet they are extraordinarily biodiverse. Home to over 250 million people, the five regions where these ecosystems are found have climate and coastal conditions that make them highly desirable human habitats. The current conservation landscape does not reflect the mediterranean biome's rarity and its importance for plant endemism. Habitat conversion will clearly outpace expansion of formal protected-area networks, and conservationists must augment this traditional strategy with new approaches to sustain the mediterranean biota. Using regional scale datasets, we determine the area of land in each of the five regions that is protected, converted (e.g., to urban or industrial), impacted (e.g., intensive, cultivated agriculture), or lands that we consider to have conservation potential. The latter are natural and semi-natural lands that are unprotected (e.g., private range lands) but sustain numerous native species and associated habitats. Chile has the greatest proportion of its land (75%) in this category and California-Mexico the least (48%). To illustrate the potential for achieving mediterranean biodiversity conservation on these lands, we use species-area curves generated from ecoregion scale data on native plant species richness and vertebrate species richness. For example, if biodiversity could be sustained on even 25% of existing unprotected, natural and semi-natural lands, we estimate that the habitat of more than 6,000 species could be represented. This analysis suggests that if unprotected natural and semi-natural lands are managed in a manner that allows for persistence of native species, we can realize significant additional biodiversity gains. Lasting biodiversity protection at the scale needed requires unprecedented collaboration among stakeholders to promote conservation both inside and outside of traditional protected areas, including on lands where people live and work.  相似文献   

10.
Closing yield gaps within existing croplands, and thereby avoiding further habitat conversions, is a prominently and controversially discussed strategy to meet the rising demand for agricultural products, while minimizing biodiversity impacts. The agricultural intensification associated with such a strategy poses additional threats to biodiversity within agricultural landscapes. The uneven spatial distribution of both yield gaps and biodiversity provides opportunities for reconciling agricultural intensification and biodiversity conservation through spatially optimized intensification. Here, we integrate distribution and habitat information for almost 20,000 vertebrate species with land‐cover and land‐use datasets. We estimate that projected agricultural intensification between 2000 and 2040 would reduce the global biodiversity value of agricultural lands by 11%, relative to 2000. Contrasting these projections with spatial land‐use optimization scenarios reveals that 88% of projected biodiversity loss could be avoided through globally coordinated land‐use planning, implying huge efficiency gains through international cooperation. However, global‐scale optimization also implies a highly uneven distribution of costs and benefits, resulting in distinct “winners and losers” in terms of national economic development, food security, food sovereignty or conservation. Given conflicting national interests and lacking effective governance mechanisms to guarantee equitable compensation of losers, multinational land‐use optimization seems politically unlikely. In turn, 61% of projected biodiversity loss could be avoided through nationally focused optimization, and 33% through optimization within just 10 countries. Targeted efforts to improve the capacity for integrated land‐use planning for sustainable intensification especially in these countries, including the strengthening of institutions that can arbitrate subnational land‐use conflicts, may offer an effective, yet politically feasible, avenue to better reconcile future trade‐offs between agriculture and conservation. The efficiency gains of optimization remained robust when assuming that yields could only be increased to 80% of their potential. Our results highlight the need to better integrate real‐world governance, political and economic challenges into sustainable development and global change mitigation research.  相似文献   

11.
Land‐use change is a major driver of the global loss of biodiversity, but it is unclear to what extent this also results in a loss of ecological traits. Therefore, a better understanding of how land‐use change affects ecological traits is crucial for efforts to sustain functional diversity. To this end we tested whether higher species richness or taxonomic distinctness generally leads to increased functional distinctness and whether intensive land use leads to functionally more narrow arthropod communities. We compiled species composition and trait data for 350 species of terrestrial arthropods (Araneae, Carabidae and Heteroptera) in different land‐use types (forests, grasslands and arable fields) of low and high land‐use intensity. We calculated the average functional and taxonomic distinctness and the rarified trait richness for each community. These measures reflect the range of traits, taxonomic relatedness and number of traits that are observed in local communities. Average functional distinctness only increased significantly with species richness in Carabidae communities. Functional distinctness increased significantly with taxonomic distinctness in communities of all analyzed taxa suggesting a high functional redundancy of taxonomically closely related species. Araneae and Heteroptera communities had the expected lower functional distinctness at sites with higher land‐use intensity. More frequently disturbed land‐use types such as managed grasslands or arable fields were characterized by species with smaller body sizes and higher dispersal abilities and communities with lower functional distinctness or trait richness. Simple recommendations about the conservation of functional distinctness of arthropod communities in the face of future land‐use intensification and species loss are not possible. Our study shows that these relationships depend on the studied taxa and land‐use type. However, for some arthropod groups functional distinctness is threatened by intensification and conversion from less to more frequently disturbed land‐uses.  相似文献   

12.
We evaluate the return on investment (ROI) from public land conservation in the state of Minnesota, USA. We use a spatially-explicit modeling tool, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), to estimate how changes in land use and land cover (LULC), including public land acquisitions for conservation, influence the joint provision and value of multiple ecosystem services. We calculate the ROI of a public conservation acquisition as the ratio of the present value of ecosystem services generated by the conservation to the cost of the conservation. For the land scenarios analyzed, carbon sequestration services generated the greatest benefits followed by water quality improvements and recreation opportunities. We found ROI values ranged from 0.21 to 5.28 depending on assumptions about future land use change, service values, and discount rate. Our study suggests conservation is a good investment as long as investments are targeted to areas with low land costs and high service values.  相似文献   

13.
Aim The species–area relationship has been applied in the conservation context to predict monotonic species richness declines as natural area is converted to human‐dominated land covers. However, some conversion of natural cover could introduce new habitat types and allow new open habitat species to occur. Moreover, decelerating richness–area relationships suggest that, as natural area is converted to human‐dominated covers, more species will be added to the rare habitat than are lost from the common one. Area effects and increased habitat diversity could each lead to a peaked relationship between species richness and the relative amount of natural area. The purpose of this study is to quantify the effect on avian species richness of conversion of natural area to human‐dominated land cover. Location Ontario, Canada. Methods We evaluated the responses of total avian richness, forest bird richness and open habitat bird richness to remaining natural area within 993 quadrats, each of 100 km2. We quantified the amount of natural land cover and land‐cover heterogeneity using remote sensing data. We used structural equation modelling (SEM) to disentangle the relationships among avian richness, natural area and land‐cover heterogeneity. Results Spatial variation in avian richness was a peaked function of remaining natural area, such that losses of up to 44% of the natural area increased avian richness. This partly reflects increased variety of land cover; however, SEM suggests that much of the increase in richness is due to pure area effects. Richness of forest species declined by two species over this range of natural cover loss while open habitat bird richness increased by approximately 20 species. The effect of natural area on species richness is consistent with the sum of species–area curves for natural habitat species and human‐dominated habitat species. Main conclusions At least in northern temperate forests, almost half of the natural land cover can be converted to human‐dominated forms before avian richness declines. Conversion of < 50% of regional natural area to human‐dominated land cover can benefit open‐area species richness with relatively few losses of forest obligate species. However, with > 50% natural area conversion, species begin to drop out of regional assemblages.  相似文献   

14.
Large‐scale modifications of natural ecosystems lead to mosaics of natural, semi‐natural and intensively used habitats. To improve communication in conservation planning, managers and other stakeholders need spatially explicit projections at the landscape scale of future biodiversity under different land‐use scenarios. For that purpose, we visualized the potential effect of five forest management scenarios on the avifauna of Kakamega Forest, western Kenya using different measures of bird diversity and GIS data. Future projections of bird diversity combined: (1) remotely sensed data on the spatial distribution of different forest management types; (2) field‐based data on the biodiversity of birds in the different management types; and (3) forest management scenarios that took into account possible views of various stakeholder groups. Management scenarios based on the species richness of forest specialists were very informative, because they reflected differences in the proportions of near‐natural forest types among the five scenarios. Projections based on community composition were even more meaningful, as they mirrored not only the proportions of near‐natural forest types, but also their perimeter to area ratios. This highlights that it is important to differentiate effects of the total area of available habitat and the degree of habitat fragmentation, both for species richness and community composition. Furthermore, our study shows that an approach that combines land‐use scenarios, remote sensing and field data on biodiversity can be used to visualize future biodiversity. As such, visualizations of alternative scenarios are valuable for successful communication about conservation planning considering different groups of stakeholders in species‐rich tropical forests.  相似文献   

15.
Aim In this study, I determine the relationships between net primary productivity (NPP), human population density, species richness and land use. I also examine the implications of human settlement patterns for species conservation. Location Australia. Methods I document the associations between NPP, human population density and the species richness of birds, butterflies and mammals using correlations and spatial regressions. I also assess changes in land‐use with NPP and population density, focussing particularly on protected areas. An initial exploration into the implications of the NPP‐population density relationship for regional conservation strategies is provided. Results Human population density increases with NPP suggesting that available energy may be a key driving force of human settlement patterns. The species richness of each taxonomic group and geographically restricted species also increases with NPP leading to substantial overlap between species diversity and populated regions. The percentage of land designated as minimal use decreases considerably with increasing human population density and NPP, while intensive agriculture is confined entirely to areas of high NPP. There are strong negative relationships between the size of Australia's National Parks and human population density and NPP. Small parks are often surrounded by relatively dense settlements, but have high average NPP, while large parks are mostly isolated and characterized by low productivity. There are no areas in the highest quartile of NPP that also occur in the most sparsely populated regions, presenting challenges for conservation strategies wanting to protect productive areas under the least threat of human development. Main conclusions Human population density and species richness respond similarly to variation in NPP, leading to spatial congruence between human settlements and productive, species rich regions. Planning strategies are required that minimize the potential threat posed by human development to diverse ecosystems and maximize the underlying productivity of protected areas. Reducing the level of threat may require stabilizing the size of the human population, while capturing larger areas of relatively high productivity in the conservation reserve system would lead to greater protection of local diversity.  相似文献   

16.
In the past years, efforts have been made to include connectivity metrics in conservation planning in order to promote and enhance well-connected systems of protected areas. Connectivity is particularly important for species that rely on more than one realm during their daily or life cycle (multi-realm species). However, conservation plans for the protection of multi-realm species usually involve a single realm, excluding other realms from the prioritization process. Here, we demonstrate an example of cross-realm conservation planning application for the island of Cyprus by taking into account the terrestrial and marine realms and their interface (i.e. coast). Operating within a data-poor context, we use functional connectivity metrics to identify priority areas for the conservation of six multi-realm species, by setting conservation targets simultaneously for the terrestrial and marine realms. MARXAN decision-support tool was used for the identification of the priority areas.Four scenarios were developed to evaluate the impacts of including connectivity in the prioritization process and the effectiveness of the existing coastal/marine protected areas in the achievement of the conservation targets set for the species. All scenarios considered land and sea anthropogenic uses as surrogate costs to influence the prioritization process.Our findings show an increase in the area of the reserve network and, therefore, the cost, when connectivity is included, whilst reducing the total boundary length. Furthermore, the current reserve network fails to achieve conservation targets, particularly for the marine part, which has a substantially smaller protection coverage than the terrestrial part.We conclude that focus should be given in the expansion of the current coastal/marine reserve network following a cross-realm conservation approach. This approach is not only relevant for the conservation of multi-realm species, but also for islandscapes, in particular, where the interdependence between the hinterland and the coast is larger and therefore the magnitude of the impacts generated in one realm and affects the other.  相似文献   

17.
The approaches to enlarge the protected areas are deeply embedded in the conservation planning.In practice,however,even in some sites of top conservation priority,there exist problems of inefficient conservation for lack of funding,to say nothing of assisting all species under threat from the viewpoint of conservationists.Identifying priority sites for conservation and establishing networks of minimum priority sites (NOMPS) are helpful for promoting the transition from number and size oriented,to quality and effectiveness oriented practices of biological conservation,and for realizing the target of biodiversity conservation with the most benefits for the least costs.Based on heuristic algorithm and integer linear programming (ILP),we propose a refined method of heuristic integer linear programming (HILP) for quantitative identification of the NOMPS to protect rare and endangered plant species (REPS) in Guangdong Province,China.The results indicate that there are 19 priority sites which are essential for protecting all of the 107 REPS distributed in 83 sites in Guangdong.These should be the paramount targets of financing and management.Compared with the ILP,which uses minimum number of sites as the only constraint,HILP takes into consideration of the effect of species richness,and is thus more suitable for conservation practices though with a little more number of priority sites selected.It is suggested that ILP and HILP are both effective quantitative methods for identifying NOMPS and can yield important information for decision making,especially when economic factors are constraints for biological conservation.  相似文献   

18.
Bird communities of natural and modified habitats in Panama   总被引:7,自引:0,他引:7  
Only a small proportion of land can realistically be protected as nature reserves and thus conservation efforts also must focus on the ecological value of agroecosystems and developed areas surrounding nature reserves. In this study, avian communities were surveyed in 11 habitat types in central Panama, across a gradient from extensive forest to intensive agricultural land uses, to examine patterns of species richness and abundance and community composition. Wooded habitats, including extensive and fragmented forests, shade coffee plantations, and residential areas supported the most species and individuals. Nearctic-Neotropical migratory species were most numerous in lowland forest fragments, shade coffee, and residential areas. Introduced Pinus caribbea and sugar cane plantations supported the fewest species compared to all other habitats. Cattle pastures left fallow for less than two years supported more than twice as many total species as actively grazed pastures, such that species richness in fallow pastures was similar to that found in wooded habitats. Community similarities were relatively low among all habitat types (none exceeding the observed 65% similarity between extensive and fragmented lowland forests), but communities in shade coffee and residential areas were 43% and 54′% similar to lowland forest fragments, respectively. Fallow pastures and residential areas shared 60% of their species. Bird communities in shade coffee and residential areas were characterized by higher proportions of frugivorous and nectarivorous species than in native forests. These same guilds also were better represented in fallow than in grazed pastures. Raptors and piscivorous species were most prevalent in cattle pastures and rice fields. These results, though based upon only species richness and abundance, demonstrate that many human-altered habitats have potential ecological value for birds, and conservation efforts in tropical areas should focus greater attention on enhancement of agricultural and developed lands as wildlife habitat. To understand the true conservation value of these modified lands will require examination not only of numbers but also of the types of species supported by these habitats, their reproductive output and survival rates.  相似文献   

19.
The approaches to enlarge the protected areas are deeply embedded in the conservation planning. In practice, however, even in some sites of top conservation priority, there exist problems of inefficient conservation for lack of funding, to say nothing of assisting all species under threat from the viewpoint of conservationists. Identifying priority sites for conservation and establishing networks of minimum priority sites (NOMPS) are helpful for promoting the transition from number and size oriented, to quality and effectiveness oriented practices of biological conservation, and for realizing the target of biodiversity conservation with the most benefits for the least costs. Based on heuristic algorithm and integer linear programming (ILP), we propose a refined method of heuristic integer linear programming (HILP) for quantitative identification of the NOMPS to protect rare and endangered plant species (REPS) in Guangdong Province, China. The results indicate that there are 19 priority sites which are essential for protecting all of the 107 REPS distributed in 83 sites in Guangdong. These should be the paramount targets of financing and management. Compared with the ILP, which uses minimum number of sites as the only constraint, HILP takes into consideration of the effect of species richness, and is thus more suitable for conservation practices though with a little more number of priority sites selected. It is suggested that ILP and HILP are both effective quantitative methods for identifying NOMPS and can yield important information for decision making, especially when economic factors are constraints for biological conservation.  相似文献   

20.
Recent studies have shown that conservation gains can be achieved when the spatial distributions of biological benefits and economic costs are incorporated in the conservation planning process. Using Alberta, Canada, as a case study we apply these techniques in the context of coarse-filter reserve design. Because targets for ecosystem representation and other coarse-filter design elements are difficult to define objectively we use a trade-off analysis to systematically explore the relationship between conservation targets and economic opportunity costs. We use the Marxan conservation planning software to generate reserve designs at each level of conservation target to ensure that our quantification of conservation and economic outcomes represents the optimal allocation of resources in each case. Opportunity cost is most affected by the ecological representation target and this relationship is nonlinear. Although petroleum resources are present throughout most of Alberta, and include highly valuable oil sands deposits, our analysis indicates that over 30% of public lands could be protected while maintaining access to more than 97% of the value of the region's resources. Our case study demonstrates that optimal resource allocation can be usefully employed to support strategic decision making in the context of land-use planning, even when conservation targets are not well defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号