首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The present study was carried out in vitro to determine the efficacy of indigenous fungi isolated from egg masses of root-knot nematode, Meloidogyne incognita on egg parasitism, egg hatching, mobility and mortality against root-knot nematode, M. incognita. The tested fungi were Acremonium strictum, Aspergillus terreus, A. nidulans, A. niger, Chetomium aubense, Chladosporium oxysporum, Fusarium chlamydosporium, F. dimarum, F. oxysporum, F. solani, Paecilomyces lilacinus, Pochonia chlamydosporia, Trichoderma viride and T. harzianum. All tested fungi showed varied effects against the nematodes. Culture filtrates of A. strictum was very effective against the nematode in regards to egg parasitism (53%), egg hatching inhibition (86%) and mortality (68%) compared to controls. A. strictum was found to have an advantage over P. lilacinus, P. chlamydosporia, T. viride and T. harzianum in that it caused greater mortality of the second stage juveniles (J2). A. terreus did not show egg parasitism but was found to be highly toxic against second stage juveniles (J2) causing high mortality (around 68%). Thus, A. strictum and A. terreus showed good biocontrol potential against root-knot nematode, M. incognita under in vitro conditions.  相似文献   

2.
Liu R  Dai M  Wu X  Li M  Liu X 《Mycorrhiza》2012,22(4):289-296
Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR) have potential for the biocontrol of soil-borne diseases. The objectives of this study were to quantify the interactions between AM fungi [Glomus versiforme (Karsten) Berch and Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe] and PGPR [Bacillus polymyxa (Prazmowski) Mace and Bacillus sp.] during colonization of roots and rhizosphere of tomato (Lycopersicon esculentum Mill) plants (cultivar Jinguan), and to determine their combined effects on the root-knot nematode, Meloidogyne incognita, and on tomato growth. Three greenhouse experiments were conducted. PGPR increased colonization of roots by AM fungi, and AM fungi increased numbers of PGPR in the rhizosphere. Dual inoculations of AM fungi plus PGPR provided greater control of M. incognita and greater promotion of plant growth than single inoculations, and the best combination was G. mosseae plus Bacillus sp. The results indicate that specific AM fungi and PGPR can stimulate each other and that specific combinations of AM fungi and PGPR can interact to suppress M. incognita and disease development.  相似文献   

3.
Summary The interaction between the VA mycorrhizal fungus,Glomus fasciculatus and the root-knot nematodes,Meloidogyne incognita andM. javanica, and their effects on the growth and phosphorus nutrition of tomato was studied in a red sandy loam soil of pH 6.0. Inoculation of tomato roots with root-knot nematodes enhanced infection and spore production byG. fasciculatus. Inoculation of tomato plants withG. fasciculatus significantly reduced the number and size of the root-knot galls produced byM. incognita andM. javanica. Inoculation withG. fasciculatus although improved plant growth and its total phosphorus content compared to the uninoculated plants, the difference were not statistically significant.  相似文献   

4.
The root-knot nematode (Meloidogyne spp.), which represents a global threat to agricultural production, can cause serious losses in both the yield and quality of many crops. Endophytic bacteria are known to have great potential against Meloidogyne incognita. The colonisation ability of endophytic Bacillus cereus BCM2 in tomato roots and its biological control efficacy of M. incognita were investigated. By the end of the growth period of tomato plants, the population of BCM2 in the rhizosphere soils and roots of the tomato were 5.86 and 3.38 log CFU g?1, respectively, indicating that BCM2 can colonise tomato roots for long periods of time. Pre-inoculation with BCM2 resulted in a significant reduction in the population of M. incognita and the gall index of tomato compared to the untreated control, and there was an increase in the tomato yield of 47.4%. Colony counts showed that the population of BCM2 in tomato roots was affected by soil type and pH, and the colonisation of BCM2 in tomato rhizosphere soils was influenced by soil water and organic matter contents. We observed that the biocontrol effects of BCM2 were best when soil pH was 7. Pre-inoculation with BCM2 can inhibit the formation of tomato galls more effectively when soil water content is 25%, and rich organic matter content was conducive to a reduction in the number of M. incognita second stage juveniles (J2s) in soil. These results demonstrated that B. cereus BCM2 has great potential for controlling M. incognita in tomato plants.  相似文献   

5.
PSX is a combination of biocontrol bacteria that can potentially prevent and control soil-borne diseases for a variety of crop cultivars. In this study, we investigated the utility of PSX in controlling root-knot nematodes in tomato under field conditions. The application of PSX reduced the severity of disease caused from Meloidogyne incognita by 63–69% and increased tomato yield by 31.5–39%. Furthermore, to investigate the effect of PSX treatment on tomato fruit quality, we quantified the soluble sugar, titratable acid, soluble solids, and vitamin C contents in fruit postharvest. We demonstrated that PSX treatment improved tomato fruit quality. Finally, we also showed that the total nitrogen (N), available N, potassium, and organic matter contents in the soil increased after PSX treatment. PSX is a promising biocontrol preparation that can provide beneficial effects to tomato growers, including biological control of root-knot disease, plant growth promotion, enhanced tomato fruit quality, and increased levels of organic fertilisers in the soil.  相似文献   

6.
The root-knot nematode Meloidogyne incognita is one of the most damaging plant parasitic nematodes in the world. In this study, the effect of cystatin from Amaranthus hypochondriacus (AhCPI) as a potential control agent for M. incognita was explored. In vitro bioassays demonstrated that AhCPI affects the growth and development of eggs and the infectivity of juveniles (J2) of M. incognita, such as mortality and slower development, showing characteristic tissue damage. Mortality levels were quantified by Probit analysis, estimating LC50s of 1.4 mg/mL for eggs and 0.028 mg/mL for J2. In planta bioassays showed that infected tomato seedlings treated with 0.056 mg/mL of AhCPI showed a 60% reduction in the number of galls, as compared with untreated J2-inoculated seedlings. Under greenhouse conditions, three applications of 10 mL of AhCPI (1.4 mg/mL) in the soil around the stem of M. incognita-infected tomato plants, reduced the number of galls by 93 ± 8%, as compared to the control M. incognita-infected plants. The application of AhCPI to the infected plants increased the yield (10.7%) of harvested tomato fruits, as compared to infected plants. These results show the potential of AhCPI for the control of M. incognita in tomato plants.  相似文献   

7.
Plant growth-promoting rhizobacterium, Pseudomonas fluorescens strain BICC602 suppresses root-knot nematode (Meloidogyne incognita) by enhancing defence mechanism leading to induced systemic resistance in cowpea (Vigna unguiculata) cv. L.Walp. and tomato (Solanum lycopersicum) cv. Pusa Ruby. In cowpea, the soil treatment proved more effective than foliar spray on root galling and eggs in roots. However, which factors are necessary in the induction of resistance response in plants against nematodes by BICC602 is not yet known. Salicylic acid (SA) production by some bacteria acts as endogenous signal for the activation of certain plant defence responses. In a split-root trial with tomato as a host plant and M. incognita as challenging parasite, BICC602 induces systemic resistance in tomato plants. Based on the results, it is assumed that P. fluorescens-induced resistance against M. incognita in cowpea and tomato is made either through SA-dependent or SA-independent transduction pathway.  相似文献   

8.
Summary Pseudomonas fluorescens strain CHA0 produces hydrogen cyanide (HCN), a secondary metabolite that accounts largely for the biocontrol ability of this strain. In this study, we examined the role of HCN production by CHA0 as an antagonistic factor that contributes to biocontrol of Meloidogyne javanica, the root-knot nematode, in situ. Culture filtrate of CHA0, resulting from 1/10-strength nutrient broth yeast extract medium amended with glycine, inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. The bacterium cultured under high oxygen-tension conditions exhibited better inhibitory effects towards nematodes, compared to its cultivation under excess oxygen situation. Growth medium amended with 0.50 or 1.0 mM FeEDDHA further improved hatch inhibition and nematicidal activity of the strain CHA0. Strain CHA77, an HCN-negative mutant, failed to exert such toxic effects, and in this strain, antinematode activity was not influenced by culture conditions. Exogenous cyanide also inhibited egg hatch and caused mortality of M. javanica juveniles in vitro. Strains CHA0 or CHA77 applied in unsterilized sandy-loam soil as drench, caused marked suppression of root-knot disease development incited by M. javanica in tomato seedlings. However, efficacy of CHA77 was noticeably lower compared to its wild type counterpart CHA0. An increased bioavailability of iron following EDTA application in soil substantially improved nematode biocontrol potential of CHA0 but not that of CHA77. Soil infestation with M. javanica eggs resulted in significantly lower nematode population densities and root-knot disease compared to the juveniles used as root-knot disease-inducing agents. Strain CHA0 significantly suppressed nematode populations and inhibited galling in tomato roots grown in soil inoculated with eggs or juveniles and treated with or without EDTA. Strain CHA0 exhibited greater biocontrol potential in soil inoculated with eggs and treated with EDTA. To demonstrate that HCN synthesis by the strain CHA0 acts as the inducing agent of systemic resistance in tomato, efficacy of the strain CHA0 was compared with CHA77 in a split root trial. The split-root experiment, guaranteeing a spatial separation of the inducing agent and the challenging pathogen, showed that HCN production by CHA0 is not crucial in the induction of systemic resistance in tomato against M. javanica, because the HCN-negative-mutant CHA77 induced the same level of resistance as the wild type but exogenous cyanide in the form of KCN failed to trigger the resistance reaction. In the root section where both nematode and the bacterium were present, strain CHA0 reduced nematode penetration to a greater extent than CHA77, suggesting that for effective control of M. javanica, a direct contact between HCN-producing CHA0 and the nematode is essential.  相似文献   

9.
Fifteen isolates of Bacillus, isolated from the root-knot nematode suppressive soils, were used for the biocontrol of Meloidogyne incognita on tomato. Bacillus isolates B1, B4, B5 and B11 caused greater inhibitory effect on hatching of M. incognita than caused by other isolates. In addition, these isolates (B1, B4, B5 and B11) caused greater colonisation of tomato roots and also caused greater increase in the growth of tomato seedling than caused by other isolates. All the isolates of Bacillus were able to increase growth of tomato and caused reduction in galling and nematode multiplication in green house tests. Isolates B1, B4, B5 and B11 caused a greater increase in growth of tomato and higher reduction in galling and nematode multiplication than other isolates in a green house test. These isolates were also tested for hydrogen cyanide (HCN) and indole acetic acid productions. Only one isolate (B13) produced HCN out of 15 tested. On the other hand, isolates B5, B11, B4 and B1 showed greater production of IAA than the other 11 isolates tested. This study suggests that Bacillus isolates B5, B11, B4 and B1 may be used for the biocontrol of M. incognita on tomato.  相似文献   

10.
Efficacy of Pseudomonas aeruginosa alone or in combination with Paecilomyces lilacinus was evaluated in the control of root-knot nematode and root-infecting fungi under laboratory and field conditions. Ethyl acetate extract (1 mg/ml) of P. lilacinus and P. aeruginosa,respectively, caused 100 and 64% mortality of Meloidogyne javanica larvae after 24 h. Ethyl acetate fractions of biocontrol agents were more effective than hexane extracts in the suppression of M. javanica larvae, indicating that active nematicidal compounds are intermediary in polarity. In field experiments, biocontrol fungus and bacterium significantly suppressed soilborne root-infecting fungi including Macrophomina phaseolina, Fusarium oxysporum, Fusarium solani, Rhizoctonia solani and Meloidogyne javanica, the root-knot nematode. P. lilacinus parasitized eggs and female of M. javanica and this parasitism was not significantly influenced in the presence of P. aeruginosa. P. aeruginosa was reisolated from the inner root tissues of tomato, whereas P. lilacinusdid not colonize tomato roots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
A pot experiment was conducted on tomato (Solanum lycopersicum cv. Pusa Ruby) to assess the effect of different phosphorus (P) levels (0, 125, 250 and 500 mg/pot) and the plant growth promoting rhizobacterium, Pseudomonas fluorescens, on the growth of tomato and on the reproduction of Meloidogyne incognita. Maximum growth of tomato occurred at P rates of 125 mg/kg soil, irrespective of whether plants were uninoculated or inoculated with P. fluorescens or M. incognita or inoculated with both the agents. Nematodes per gram of roots, egg masses per root, eggs per egg mass and galls per root significantly increased by increasing levels of P. P. fluorescens performed better than other treatments and different P levels in improving tomato growth and reducing galling and multiplication of M. incognita.  相似文献   

12.
The root-knot nematode Meloidogyne incognita poses a worldwide threat to agriculture, with an increasing demand for alternative control options since most common nematicides are being withdrawn due to environmental concerns. The biocontrol potential of arbuscular mycorrhizal fungi (AMF) against plant-parasitic nematodes has been demonstrated, but the modes of action remain to be unraveled. In this study, M. incognita penetration of second-stage juveniles at 4, 8 and 12 days after inoculation was compared in tomato roots (Solanum lycopersicum cv. Marmande) pre-colonized or not by the AMF Glomus mosseae. Further life stage development of the juveniles was also observed in both control and mycorrhizal roots at 12 days, 3 weeks and 4 weeks after inoculation by means of acid fuchsin staining. Penetration was significantly lower in mycorrhizal roots, with a reduction up to 32%. Significantly lower numbers of third- and fourth-stage juveniles and females accumulated in mycorrhizal roots, at a slower rate than in control roots. The results show for the first time that G. mosseae continuously suppresses root-knot nematodes throughout their entire early infection phase of root penetration and subsequent life stage development.  相似文献   

13.
In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extracellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0 inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.  相似文献   

14.
The nematicidal activity of dried ground seeds of Ammi majus, Matricaria chamomilla, Ricinus communis, Brassica alba, B. oleracea, Peganum harmala, Solanum nigrum, Raphanus sativus and Eucalyptus sp. was assessed against the root-knot nematode, Meloidogyne incognita, infecting tomato in a glasshouse. The powdered seeds of the tested plants were incorporated into the soil at the rate of 5 g/kg and their nematicidal activity was compared with that of the synthetic nematicide carbofuran at the rate of 0.01 g a.i./kg. The effects of the treatments on the growth of tomato were also examined. The populations of M. incognita in the soil and root galling of tomato were significantly suppressed by the powdered seeds of all the plant species tested, with the greatest reduction occurring in soil amended with M. chamomilla, followed by soil treated with powdered seeds of A. majus, S. nigrum, R. communis and Eucalyptus sp. The efficacy of B. oleracea, B. alba, M. chamomilla and R. communis in reducing the number of J2 in the soil was similar to that of carbofuran. All amendments, except powdered seeds of M. chamomilla and A. majus significantly increased shoot length compared to the untreated inoculated plants. Shoot weight was significantly increased in soil amended with powdered seeds of B. oleracea, B. alba, R. communis, P. harmala and S. nigrum, but not in soil amended with the other seed powders when compared with untreated inoculated soil. Significant increases in root length occurred in pots amended with seed powder of B. alba, R. communis and Eucalyptus and in root weight for P. harmala. None of the tested dried seeds was phytotoxic to tomato plants at the applied rate.  相似文献   

15.
Three isolates of Verticillium leptobactrum proceeding from egg masses of root-knot nematodes (RKN) Meloidogyne spp. and soil samples collected in Tunisia were evaluated against second-stage juveniles (J2) and eggs of M. incognita, to determine the fungus biocontrol potential. In vitro tests showed that V. leptobactrum is an efficient nematode parasite. The fungus also colonized egg masses and parasitized hatching J2. In a greenhouse assay with tomato plants parasitized by M. incognita and M. javanica, V. leptobactrum was compared with isolates of Pochonia chlamydosporia and Monacrosporium sp., introducing the propagules into nematode-free or naturally infested soils. The V. leptobactrum isolates were active in RKN biocontrol, improving plants growth with a significant increase of tomato roots length, lower J2 numbers in soil or egg masses, as well as higher egg mortalities. In a second assay with M. javanica, treatments with three V. leptobactrum isolates reduced egg masses on roots as well as the density of J2 and the number of galls. To evaluate the fungus capability to colonize egg masses a nested Real-time polymerase chain reaction (PCR) assay, based on a molecular beacon probe was used to assess its presence. The probe was designed on a V. leptobactrum ITS region, previously sequenced. This method allowed detection of V. leptobactrum from egg masses, allowing quantitative DNA and fungal biomass estimations.  相似文献   

16.
Meloidoyne incognita (root-knot nematode) and Fusarium solani (root-rot pathogen) were the common soil-borne pathogens and cause severe damage to bean plants in newly reclaimed sandy soil in Nubaryia district, Behera Governorate, Egypt. The antagonistic effects of Trichoderma album and Trichoderma viride as well as three commercial products namely Rhizo-N® (Bacillus subtilis), Bio-Arc® 6% (Bacillus megaterium) and Bio-Zeid® 2.5% (T. album) were tested against M. incognita and F. solani under naturally infected field conditions. T. album and T. viride highly reduced the frequency (%) population of pathogenic fungi such as Fusarium spp., F. solani and Rhizoctonia spp., than the commercial products. Results indicated that all the tested bio-control agents reduced, significantly, the nematode criteria as evidenced by the number of juvenile (J2) in soil and number of galls and egg masses on roots of common bean and Fusarium root-rot incidence (%). Rhizo-N® highly reduced the number of J2 in soil, while T. album was the best in reducing the number of galls and egg masses in roots. The bio-control agents also increased the plant growth parameters of common bean plants i.e. plant height, plant weight, branch no./plant, pods no./plant, pod weight/plant, pod weight, seeds no./plant, fresh seeds weight/pod, dry seeds weight/pod and dry weight of 100 seeds.  相似文献   

17.
The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 μg [low P] or 30 μg [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 μ/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.  相似文献   

18.
Xia  Yanfei  Li  Shen  Liu  Xueting  Zhang  Chong  Xu  Jianqiang  Chen  Yingwu 《Annals of microbiology》2019,69(12):1227-1233
Purpose

Determination of the nematicidal potential and mode of action of bacteria isolated from tobacco rhizosphere soil against the root-knot nematode Meloidogyne javanica in tomato plants.

Methods

Antagonistic bacteria were isolated from rhizosphere soil of tobacco infested with root-knot nematodes. Culture filtrate was used to examine nematicidal activity and ovicidal action of bacterial strains. Biocontrol of M. javanica and growth of treated tomato plants were assessed in pot experiments. To clarify whether secondary metabolites of bacteria in tomato roots induced systemic resistance to M. javanica, bacterial culture supernatants and second-stage juvenile nematodes were applied to spatially separated tomato roots using a split-root system. Bacterial strains were identified by 16S rDNA and gyrB gene sequencing and phylogenetic analysis.

Results

Of the 15 bacterial strains isolated, four (LYSX1, LYSX2, LYSX3, and LYSX4) demonstrated nematicidal activity against second-stage juveniles of M. javanica, and strain LYSX1 showed the greatest antagonistic activity; there was dose-dependent variability in nematicidal activity and inhibition of egg mass hatching by strain LYSX1. In vivo application of LYSX1 to tomato seedlings decreased the number of egg masses and galls and increased the root and shoot fresh weight. Treatment of half of the split-root system with LYSX1 reduced nematode penetration to the other half by 41.64%. Strain LYSX1 was identified as Bacillus halotolerans.

Conclusion

Bacillus halotolerans LYSX1 is a potential microbe for the sustainable biocontrol of root-knot nematodes through induced systemic resistance in tomato.

  相似文献   

19.
The individual, concomitant and sequential inoculation of second stage juveniles (at 2000 J2/kg soil) of Meloidogyne incognita and Rhizoctonia solani (at 2 g mycelial mat/kg soil) showed significant reduction in plant growth parameters viz. plant length, fresh weight and dry weight as compared to control. The greatest reduction in plant growth parameters was recorded in the plants simultaneously inoculated with M. incognita and R. solani followed by sequential and individual inoculation. In sequential inoculation, plant inoculated with M. incognita 15 days prior to R. solani shows more reduction in comparison to plant inoculated with R. solani 15 days prior to M. incognita. Moreover, the multiplication of nematode and number of galls/root system were significantly reduced in concomitant and sequential inoculation as compared to individual inoculation, whereas the intensity of root-rot/root system caused by R. solani was increased in the presence of root-knot nematode M. incognita as compared to when R. solani was inoculated individually.  相似文献   

20.
Abstract

Effects of combining an entomopathogenic nematode (EPNs) and nematode-trapping fungi to control root-knot nematode were studied in the laboratory and in a tomato field. Bioassay effects of EPNs (Heterorhabditis bacteriophora) on growth of the two nematode-trapping fungi (Dactylaria brochopaga and Arthrobotrys conoides) attacking J2 of Meloidogyne incognita were studied in the laboratory. A field experiment was conducted in a tomato field. The mortality percentages were higher in combining EPNs and trapping fungi than either by trapping fungi or EPNs alone. Combining EPNs with A. comcaides fungi caused mortality higher than application by EPNs and trapping fungi D. brochopaga. The highest mortality percentage of combined EPNs and trapping fungi on larvae, root galls and egg-masses of M. incognita in tomato field were in the treatment of combined EPNs and D. brochopaga several times and the treatment of combined EPNs and A. comcaides several times, followed by the treatment of combined EPNs and D. brochopaga one time, and treatment of combined EPNs and A. comcaides one time. In the third stage came the treatment of D. brochopaga alone, and the treatment of A. comcaides alone, finally came effects of the treatment of EPNs alone. The highest tomato yield was recorded in treatments of combined EPNs and D. brochopaga or A. comcaides compared to the separate treatments and control. Thus, we recommend farmers to use combination of EPNs and trapping fungi for increasing the mortality of M. incognita in tomato fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号