首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Summary Lineage analysis in vitro of heterogeneous tissues such as mammary epithelium requires the separation of constituent cell types and their growth as clones. The separation of virgin mouse mammary luminal epithelial and myoepithelial cells by fluorescence-activated cell-sorting, their growth at clonal density, and the phenotyping of the clones obtained with cell-type specific markers are described in this paper. Epithelial cells were isolated by collagenase digestion followed by trypsinization, and the luminal and myoepithelial cells were flow-sorted with the rat monoclonal antibodies 33A10 and JB6, respectively. Sorted cells were cloned under, using low oxygen conditions (<5% vol/vol), in medium containing cholera toxin and insulin, with an irradiated feeder layer of 3T3-L1 cells. Clones were characterized morphologically, and antigenically by multiple immunofluorescence with a panel of antibodies to cytoskeletal antigens specific to either luminal epithelial or myoepithelial cells in situ. Whereas sorted myoepithelial cells gave a single clone type, sorted luminal cells gave three morphological clone types, two of which grew rapidly. All myoepithelially derived clones showed a limited proliferative capacity in vitro, in contrast to their rat and human counterparts, as shown in previous studies. The present results with sorted mouse cells have also allowed the stability of the differentiated phenotype in mouse, rat, and human mammary luminal epithelial and myoepithelial cells in primary clonal culture to be compared. They show that the mouse mammary cells are the least stable in terms of expression of differentiation-specific cytoskeletal markers in vitro.  相似文献   

2.
We have previously demonstrated that purified virgin mouse mammary luminal epithelial and myoepithelial cells promiscuously express cell type-specific cytokeratins when they are cloned in vitro. Changes in cytokeratin expression may be indicators of the loss or change of the differentiated identity of a cell. To investigate the factors that may be responsible for the maintenance of differentiated cellular identity, specifically cell-cell and cell-matrix interactions, we cloned flow-sorted mouse mammary epithelial cells on the extracellular matrix (ECM) derived from the Engelbreth-Holm-Swarm murine sarcoma (EHS matrix). Changes in cell differentiation on EHS, compared with culture on glass, were analyzed by comparing patterns of cytokeratin expression. The results indicate that ECM is responsible for maintenance of the differentiated identity of basal/myoepithelial cells and prevents the inappropriate expression of luminal antigens seen on glass or plastic. Luminal cell identity in the form of retention of luminal markers and absence of basal/myoepithelial antigens, on the contrary, appears to depend on homotypic cell-cell contacts and interactions. The results also show that luminal cells (or a subpopulation of them) can generate a cell layer that expresses only basal cytokeratin markers (and no luminal cytokeratin markers) and may form a pluripotent compartment. (J Histochem Cytochem 47:1513-1524, 1999)  相似文献   

3.
Summary We report on the discrimination of vascular smooth muscle cells and myoepithelial cells in primary cultures of human breast tissue. Breast tissue was disaggregated enzymatically and the resulting organoids seeded in monolayer culture on collagen-coated plastic in serum-free medium CDM3a. Two main types of organoids were present after enzymatic digestion. One resembled small blood vessels and the other interlobular ducts or acini of the breast gland epithelium. Within 3 to 8 d after plating the organoids migrated into typical monolayer islets. These monolayer islets were evaluated using phase contrast microscopy and further tagged with monoclonal antibodies for immunocytochemical demonstration of Factor VIII-related antigen, muscle iso-forms of actin, type IV collagen, vimentin, desmin, and keratins. It is concluded that vascular smooth muscle cells resembled myoepithelial cells by expressing vimentin filaments, depositing type IV collagen, and showing immunoreactivity to muscle iso-forms of actin. However, whereas vascular smooth muscle cells were associated with endothelial cells and sometimes expressed desmin, myoepithelial cells appeared together with luminal epithelial cells and expressed cytokeratins. This work was supported by the Danish Medical Research Council, the Danish Cancer Society, the NOVO Foundation, and the Thaysen Foundation.  相似文献   

4.
Breast epithelial stem cells are thought to be the primary targets in the etiology of breast cancer. Since breast cancers mostly express estrogen and progesterone receptor (ERalpha and PR), we examined the biology of these ERalpha/PR-positive cells and their relationship to stem cells in normal human breast epithelium. We employed several complementary approaches to identify putative stem cell markers, to characterise an isolated stem cell population and to relate these to cells expressing the steroid receptors ERalpha and PR. Using DNA radiolabelling in human tissue implanted into athymic nude mice, a population of label-retaining cells were shown to be enriched for the putative stem cell markers p21(CIP1) and Msi-1, the human homolog of Drosophila Musashi. Steroid receptor-positive cells were found to co-express these stem cell markers together with cytokeratin 19, another putative stem cell marker in the breast. Human breast epithelial cells with Hoechst dye-effluxing "side population" (SP) properties characteristic of mammary stem cells in mice were demonstrated to be undifferentiated "intermediate" cells by lack of expression of myoepithelial and luminal apical membrane markers. These SP cells were 6-fold enriched for ERalpha-positive cells and expressed several fold higher levels of the ERalpha, p21(CIP1) and Msi1 genes than non-SP cells. In contrast to non-SP cells, SP cells formed branching structures in matrigel which included cells of both luminal and myoepithelial lineages. The data suggest a model where scattered steroid receptor-positive cells are stem cells that self-renew through asymmetric cell division and generate patches of transit amplifying and differentiated cells.  相似文献   

5.
Summary The microenvironment plays a key role in the cellular differentiation of the two main cell lineages of the human breast, luminal epithelial, and myoepithelial. It is not clear, however, how the components of the microenvironment control the development of these cell lineages. To investigate how lineage development is regulated by 3-D culture and microenvironment components, we used the PMC42-LA human breast carcinoma cell line, which possesses stem cell characteristics. When cultured on a two-dimensional glass substrate, PMC42-LA cells formed a monolayer and expressed predominantly luminal epithelial markers, including cytokeratins 8, 18, and 19; E-cadherin; and sialomucin. The key myoepithelial-specific proteins α-smooth muscle actin and cytokeratin 14 were not expressed. When cultured within Engelbreth-Holm-Swarm sarcoma-derived basement membrane matrix (EHS matrix), PMC42-LA cells formed organoids in which the expression of luminal markers was reduced and the expression of other myoepithelial-specific markers (cytokeratin 17 and P-cadherin) was promoted. The presence of primary human mammary gland fibroblasts within the EHS matrix induced expression of the key myoepithelial-specific markers, α-smooth muscle actin and cytokeratin 14. Immortalized human skin fibroblasts were less effective in inducing expression of these key myoepithelial-specific markers. Confocal dual-labeling showed that individual cells expressed luminal or myoepithelial proteins, but not both. Conditioned medium from the mammary fibroblasts was equally effective in inducing myoepithelial marker expression. The results indicate that the myoepithelial lineage is promoted by the extracellular matrix, in conjunction with products secreted by breast-specific fibroblasts. Our results demonstrate a key role for the breast microenvironment in the regulation of breast lineage development.  相似文献   

6.
Isolation and characterization of human mammary stem cells   总被引:12,自引:0,他引:12  
Since stem cells are present throughout the lifetime of an organism, it is thought that they may accumulate mutations, eventually leading to cancer. In the breast, tumours are predominantly oestrogen and progesterone receptor-positive (ERalpha/PR+). We therefore studied the biology of ERalpha/PR-positive cells and their relationship to stem cells in normal human mammary epithelium. We demonstrated that ERalpha/PR-positive cells co-express the putative stem cell markers p21(CIP1/WAF1), cytokeratin (CK) 19 and Musashi-1 when examined using dual label immunofluorescence on tissue sections. Next, we isolated a Hoechst dye-effluxing 'side population' (SP) from the epithelium using flow cytometry and demonstrated them to be undifferentiated cells by lack of expression of myoepithelial and luminal cell-specific antigens such as CALLA and MUC1. Epithelial SP cells were shown to be enriched for the putative stem cell markers p21(CIP1/WAF1), Musashi-1 and ERalpha/PR-positive cells. Lastly, SP cells, compared to non-SP, were highly enriched for the capacity to produce colonies containing multiple lineages in 3D basement membrane (Matrigel) culture. We conclude that breast stem cells include two populations: a primitive ERalpha/PR-negative stem cell necessary for development and a shorter term ERalpha/PR-positive stem cell necessary for adult tissue homeostasis during menstrual cycling. We speculate these two basic stem cell types may therefore be the cells of origin for ERalpha-positive and -negative breast tumours.  相似文献   

7.
The bilayered mammary epithelium comprises a luminal layer of secretory cells and a basal layer of myoepithelial cells. Numerous data suggest the existence of self-renewing, pluripotent mammary stem cells; however, their molecular characteristics and differentiation pathways are largely unknown. BC44 mammary epithelial cells in culture, display phenotypic characteristics of basal epithelium, i.e., express basal cytokeratins 5 and 14 and P-cadherin, but no smooth muscle markers. In vivo, after injection into the cleared mammary fat pad, these cells gave rise to bilayered, hollow, alveolus-like structures comprising basal cells expressing cytokeratin 5 and luminal cells positive for cytokeratin 8 and secreting beta-casein in a polarized manner into the lumen. The persistent stimulation of EGF receptor signaling pathway in BC44 cells in culture resulted in the loss of the in vivo morphogenetic potential and led to the induction of active MMP2, thereby triggering cell scattering and motility on laminin 5. These data (a) suggest that BC44 cells are capable of asymmetric division for self-renewal and the generation of a differentiated progeny restricted to the luminal lineage; (b) clarify the function of EGF in the control of the BC44 cell phenotypic plasticity; and (c) suggest a role for this phenomenon in the mammary gland development.  相似文献   

8.
Abstract. Primary cultures of normal human breast were stained with monoclonal antibodies to see if antigens characteristic of luminal epithelial cells are retained in culture. Three monoclonal antibodies were used, LICR-LON-M8, LICR-LON-M18, and LICR-LON-M24, all specific for the cell surface of luminal epithelial as opposed to myoepithelial or stromal cells in the breast, and each staining a different subset of the epithelial cells in the intact tissue. Cultures were prepared from reduction mammoplasty samples by digestion with collagenase. The surface layer of cells was stained by immunofluorescence without fixation. (Cells underneath the surface layer were not accessible to this mode of staining). The antibodies stained patches of cells resembling flattened epithelium. These patches of cells cannot be distinguished by phase contrast microscopy without reference to the staining, in fact the boundaries of the cells are not usually resolved by phase contrast microscopy. Electron microscopy of sections through these cells show they are very flattened. They lie on top of the polygonal and elongated cells that dominate the phase contrast image. Two of the antibodies, M8 and M24, stain subsets of these epithelial-like cells at all stages of culture. The third antibody, Ml8, stains such cells initially, but after the first few days staining is predominantly found on the polygonal and elongated cells, then this also gradually disappears. It is possible that the cells stained by antibody Ml8 are converting from the epithelial-like morphology to the cuboidal and elongated morphology. Many cells are not stained by any of the antibodies, so appear either to by myoepithelial in origin or to have lost their luminal epithelial surface antigens at an early stage. This analysis draws attention to the variety of cell types in these cultures and the limitations of phase contrast microscopy as a means of analysing them.  相似文献   

9.
Primary cultures of normal human breast were stained with monoclonal antibodies to see if antigens characteristic of luminal epithelial cells are retained in culture. Three monoclonal antibodies were used, LICR-LON-M8, LICR-LON-M18, and LICR-LON-M24, all specific for the cell surface of luminal epithelial as opposed to myoepithelial or stromal cells in the breast, and each staining a different subset of the epithelial cells in the intact tissue. Cultures were prepared from reduction mammoplasty samples by digestion with collagenase. The surface layer of cells was stained by immunofluorescence without fixation. (Cells underneath the surface layer were not accessible to this mode of staining). The antibodies stained patches of cells resembling flattened epithelium. These patches of cells cannot be distinguished by phase contrast microscopy without reference to the staining, in fact the boundaries of the cells are not usually resolved by phase contrast microscopy. Electron microscopy of sections through these cells show they are very flattened. They lie on top of the polygonal and elongated cells that dominate the phase contrast image. Two of the antibodies, M8 and M24, stain subsets of these epithelial-like cells at all stages of culture. The third antibody, M18, stains such cells initially, but after the first few days staining is predominantly found on the polygonal and elongated cells, then this also gradually disappears. It is possible that the cells stained by antibody M18 are converting from the epithelial-like morphology to the cuboidal and elongated morphology. Many cells are not stained by any of the antibodies, so appear either to by myoepithelial in origin or to have lost their luminal epithelial surface antigens at an early stage. This analysis draws attention to the variety of cell types in these cultures and the limitations of phase contrast microscopy as a means of analysing them.  相似文献   

10.
We performed a 2-DE analysis of proteins of the newly established spontaneously immortalized clonal cell line EM-G3 derived from a primary lesion of infiltrating ductal breast carcinoma. EM-G3 cells may represent progenitors of the mammary epithelial cells spontaneously immortalized in early phase of cancerogenesis. We compared the protein profile of EM-G3 line with proteins from populations of normal mammary epithelial cells (NME), and determined the phenotype of both types of cells. NME cells are a mixture of both main cell types in breast epithelia, myoepithelial and luminal cells. The EM-G3 breast cancer cell line has a unique basal-like phenotype. We identified proteins that are differently expressed in these cells. Cytokeratin 16, cytokeratin 19, squamous cell carcinoma antigen 1, caphepsin B and caspase 14 were predominantly expressed by NME cells. Cytokeratin 13, isoelectric variant of annexin 5, isoelectric variant of chloride intracellular channel protein 1, glyoxalase 1 and glutamine synthetase were predominantly expressed by EM-G3 cells. The proteins up-regulated in EM-G3 cells may represent potential protein markers of mammary epithelial cells progenitors and may be important in early phase of carcinogenesis.  相似文献   

11.
Abstract.  Although experimental data clearly confirm the existence of self-renewing mammary stem cells, the characteristics of such progenitor cells have never been satisfactorily defined. Using a double immunofluorescence technique for simultaneous detection of the basal cytokeratin 5, the glandular cytokeratins 8/18 and the myoepithelial differentiation marker smooth muscle actin (SMA), we were able to demonstrate the presence of CK5+ cells in human adult breast epithelium. These cells have the potential to differentiate to either glandular (CK8/18+) or myoepithelial cells (SMA+) through intermediary cells (CK5+ and CK8/18+ or SMA+). We therefore proceeded on the assumption that the CK5+ cells are phenotypically and behaviourally progenitor (committed adult stem) cells of human breast epithelium. Furthermore, we furnish evidence that most of these progenitor cells are located in the luminal epithelium of the ductal lobular tree. Based on data obtained in extensive analyses of proliferative breast disease lesions, we have come to regard usual ductal hyperplasia as a progenitor cell-derived lesion, whereas most breast cancers seem to evolve from differentiated glandular cells. Double immunofluorescence experiments provide a new tool to characterize phenotypically progenitor (adult stem) cells and their progenies. This model has been shown to be of great value for a better understanding not only of normal tissue regeneration but also of proliferative breast disease. Furthermore, this model provides a new tool for unravelling further the regulatory mechanisms that govern normal and pathological cell growth.  相似文献   

12.
Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity.  相似文献   

13.
Abstract.  The majority of human breast carcinomas exhibit luminal characteristics and as such, are most probably derived from progenitor cells within the luminal epithelial compartment. This has been subdivided recently into at least three luminal subtypes based on gene expression patterns. The value of knowing the cellular origin of individual tumours is clear and should aid in designing effective therapies. To do this, however, we need strategies aimed at defining the nature of stem and progenitor cell populations in the normal breast. In this review, we will discuss our technical approach for delineating the origin of the epithelial cell types. A major step forward was the purification of each cell type by the application of immunomagnetic cell sorting based on expression of lineage-specific surface antigens. We then developed chemically defined media that could support either the luminal epithelial or the myoepithelial cell phenotype in primary cultures. Having succeeded in continuous propagation presumably without loss of markers, we could show that a subset of the luminal epithelial cells could convert to myoepithelial cells, signifying the possible existence of a progenitor cell population. By combining the information on marker expression and in situ localization with immunomagnetic sorting and subsequent immortalization, we have identifed and isolated a cytokeratin 19-positive suprabasal putative precursor cell in the luminal epithelial compartment and established representative cell lines. This suprabasal-derived epithelial cell line is able to generate both itself and differentiated luminal epithelial and myoepithelial cells, and in addition, is able to form elaborate terminal duct lobular unit (TDLU)-like structures within a reconstituted basement membrane. As more than 90% of breast cancers arise in TDLUs and more than 90% are also cytokeratin 19-positive, we suggest that this cell population contains a breast-cancer progenitor.  相似文献   

14.
The goat was chosen as the model system for investigating mammary gland development in the ruminant. Histological and immunocytochemical staining of goat mammary tissue at key stages of development was performed to characterize the histogenesis of the ruminant mammary gland. The mammary gland of the virgin adult goat consisted of a ductal system terminating in lobules of ductules. Lobuloalveolar development of ductules occurred during pregnancy and lactation which was followed by the regression of secretory alveoli at involution. The ductal system was separated from the surrounding stroma by a basement membrane which was defined by antisera raised against laminin and Type IV collagen. Vimentin, smooth-muscle actin and myosin monoclonal antisera as well as antisera to cytokeratin 18 and multiple cytokeratins stained a layer of myoepithelial cells which surround the ductal epithelium. Staining of luminal epithelial cells by monoclonal antibodies to cytokeratins was dependent on their location along the ductal system, from intense staining in ducts to variable staining in ductules. The staining of epithelial cells by monoclonals to cytokeratins also varied according to the developmental status of the goat, being maximal in virgin and involuting glands, lowest at lactation and intermediate during gestation. In addition, cuboidal cells, situated perpendicular to myoepithelial cells and adjacent to alveolar cells in secretory alveoli, were also stained by cytokeratin monoclonal antibodies and antisera to the receptor protein, erbB-2, in similar fashion to luminal epithelial cells. These results demonstrate that caprine mammary epithelial cell differentiation along the alveolar pathway is associated with the loss of certain types of cytokeratins and that undifferentiated and secretory alveolar epithelial cells are present within lactating goat mammary alveoli.  相似文献   

15.
16.
The normal human breast comprises an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells separated from the connective tissue stroma by an intact basement membrane. In breast cancer, tumor cells are in direct contact with the surrounding highly activated collagenous stroma, with little or no discernible myoepithelial fence from the original double-layered structure. To understand the evolution of these two scenarios, we took advantage of a three-dimensional hydrated collagen gel approach. The contribution of myoepithelial cells to normal morphogenesis was studied by ablation and rescue experiments, and genes regulated on tumor cell-fibroblast interaction were identified in a tumor environment assay. In normal breast morphogenesis, the ability to correctly polarize sialomucin to the luminal membrane of emerging acini was used as a criterion for apical polarity and functional differentiation. In the assay of breast neoplasia, the consequence of reciprocal tumor cell-fibroblast interaction was addressed morphologically as well as by a differential display approach. Normal breast epithelial cells were purified immunomagnetically and an established cell line, MCF-7, was used as a surrogate tumor cell. With regard to the importance of myoepithelial cells in normal breast epithelial morphogenesis, the collagen gel assay elucidated the following subtleties: In contrast to culturing in basement membrane gels, luminal epithelial cells when cultured alone made structures that were all inversely polarized. This aberrant polarity could be rescued by co-culture with myoepithelial cells. The molecular activity of myoepithelial cells responsible for correct morphogenesis was narrowed down to the laminin-1 component of the basement membrane. As for the consequence of interaction of tumor cells with connective tissue fibroblasts, the assay allowed us to identify a hitherto undescribed gene referred to as EPSTI1. The relevance of the assay-based identification of regulated genes was confirmed in a series of breast carcinomas in which EPSTI1 was highly upregulated compared with normal breast. Few if any of these observations would have been possible on two-dimensional tissue culture plastic.  相似文献   

17.
Increasing evidence indicates that invasive properties of breast cancers rely on gain of mesenchymal and stem features, which has suggested that the dual targeting of these phenotypes may represent an appealing therapeutic strategy. It is known that the fraction of stem cells can be enriched by culturing breast cancer cells as mammospheres (MS), but whether these pro-stem conditions favor also the expansion of cells provided of mesenchymal features is still undefined. In the attempt to shed light on this issue, we compared the phenotypes of a panel of 10 breast cancer cell lines representative of distinct subtypes (luminal, HER2-positive, basal-like and claudin-low), grown in adherent conditions and as mammospheres. Under MS-proficient conditions, the increment in the fraction of stem-like cells was associated to upregulation of the mesenchymal marker Vimentin and downregulation of the epithelial markers expressed by luminal cells (E-cadherin, KRT18, KRT19, ESR1). Luminal cells tended also to upregulate the myoepithelial marker CD10. Taken together, our data indicate that MS-proficient conditions do favor mesenchymal/myoepithelial features, and indicate that the use of mammospheres as an in vitro tumor model may efficiently allow the exploitation of therapeutic approaches aimed at targeting aggressive tumors that have undergone epithelial-to-mesenchymal transition.  相似文献   

18.
Increasing evidence indicates that invasive properties of breast cancers rely on gain of mesenchymal and stem features, which has suggested that the dual targeting of these phenotypes may represent an appealing therapeutic strategy. It is known that the fraction of stem cells can be enriched by culturing breast cancer cells as mammospheres (MS), but whether these pro-stem conditions favor also the expansion of cells provided of mesenchymal features is still undefined.

In the attempt to shed light on this issue, we compared the phenotypes of a panel of 10 breast cancer cell lines representative of distinct subtypes (luminal, HER2-positive, basal-like and claudin-low), grown in adherent conditions and as mammospheres. Under MS-proficient conditions, the increment in the fraction of stem-like cells was associated to upregulation of the mesenchymal marker Vimentin and downregulation of the epithelial markers expressed by luminal cells (E-cadherin, KRT18, KRT19, ESR1). Luminal cells tended also to upregulate the myoepithelial marker CD10. Taken together, our data indicate that MS-proficient conditions do favor mesenchymal/myoepithelial features, and indicate that the use of mammospheres as an in vitro tumor model may efficiently allow the exploitation of therapeutic approaches aimed at targeting aggressive tumors that have undergone epithelial-to-mesenchymal transition.  相似文献   

19.

Background

Breast cancer is a remarkably heterogeneous disease. Luminal, basal-like, “normal-like”, and ERBB2+ subgroups were identified and were shown to have different prognoses. The mechanisms underlying this heterogeneity are poorly understood. In our study, we explored the role of cellular differentiation and senescence as a potential cause of heterogeneity.

Methodology/Principal Findings

A panel of breast cancer cell lines, isogenic clones, and breast tumors were used. Based on their ability to generate senescent progeny under low-density clonogenic conditions, we classified breast cancer cell lines as senescent cell progenitor (SCP) and immortal cell progenitor (ICP) subtypes. All SCP cell lines expressed estrogen receptor (ER). Loss of ER expression combined with the accumulation of p21Cip1 correlated with senescence in these cell lines. p21Cip1 knockdown, estrogen-mediated ER activation or ectopic ER overexpression protected cells against senescence. In contrast, tamoxifen triggered a robust senescence response. As ER expression has been linked to luminal differentiation, we compared the differentiation status of SCP and ICP cell lines using stem/progenitor, luminal, and myoepithelial markers. The SCP cells produced CD24+ or ER+ luminal-like and ASMA+ myoepithelial-like progeny, in addition to CD44+ stem/progenitor-like cells. In contrast, ICP cell lines acted as differentiation-defective stem/progenitor cells. Some ICP cell lines generated only CD44+/CD24-/ER-/ASMA- progenitor/stem-like cells, and others also produced CD24+/ER- luminal-like, but not ASMA+ myoepithelial-like cells. Furthermore, gene expression profiles clustered SCP cell lines with luminal A and “normal-like” tumors, and ICP cell lines with luminal B and basal-like tumors. The ICP cells displayed higher tumorigenicity in immunodeficient mice.

Conclusions/Significance

Luminal A and “normal-like” breast cancer cell lines were able to generate luminal-like and myoepithelial-like progeny undergoing senescence arrest. In contrast, luminal B/basal-like cell lines acted as stem/progenitor cells with defective differentiation capacities. Our findings suggest that the malignancy of breast tumors is directly correlated with stem/progenitor phenotypes and poor differentiation potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号