首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
Kim K  Liu F 《Biochimica et biophysica acta》2007,1769(11-12):603-612
Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. This enzyme is a ribonucleoprotein complex for tRNA processing. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). EGSs, which are RNAs derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P and M1 ribozyme. When covalently linked with a guide sequence, M1 can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which cleaves any target RNAs that base pair with the guide sequence. Studies have demonstrated efficient cleavage of mRNAs by M1GS and RNase P complexed with EGSs in vitro. Moreover, highly active M1GS and EGSs were successfully engineered using in vitro selection procedures. EGSs and M1GS ribozymes are effective in blocking gene expression in both bacteria and human cells, and exhibit promising activity for antimicrobial, antiviral, and anticancer applications. In this review, we highlight some recent results using the RNase P-based technology, and offer new insights into the future of using EGS and M1GS RNA as tools for basic research and as gene-targeting agents for clinical applications.  相似文献   

2.
We have studied the assembly of Escherichia coli RNase P from its catalytic RNA subunit (M1 RNA) and its protein subunit (C5 protein). A mutant form of the protein subunit, C5A49, has been purified to apparent homogeneity from a strain of E. coli carrying a thermosensitive mutation in the rnpA gene. The heat inactivation kinetics of both wild-type and mutant holoenzymes are similar, an indication of equivalent thermal stability. However, when the catalytic efficiencies of the holoenzymes were compared, we found that the holoenzyme containing the mutant protein had a lower efficiency of cleavage than the wild-type holoenzyme at 33, 37, and 44 degrees C. We then explored the interaction of M1 RNA and C5 protein during the assembly of the holoenzyme. The yield of active holoenzyme obtained by reconstitution with wild-type M1 RNA and C5A49 protein in vitro can be considerably enhanced by the addition of excess M1 RNA, just as it can be in vivo. We concluded that the Arg-46----His-46 mutation in the C5A49 protein affects the ability of the protein to participate with M1 RNA in the normal assembly process of RNase P.  相似文献   

3.
4.
The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.  相似文献   

5.
The effect of structural changes on the functions of the RNA component (M1 RNA) of ribonuclease P (RNase P) of Escherichia coli has been studied using the thermosensitive mutants of the rnpB gene. One of the mutants, ts709, has two G--A substitutions at positions 89 and 365 from the 5' end of M1 RNA. Of these substitutions, the one at position 89 from the 5' end is responsible for the phenotype of this mutant. Although the RNase P activity of ts709 is thermosensitive, the mutant M1 RNA has the same catalytic activity as the wild-type RNA. M1 RNA of another mutant, ts2418, has a G--A substitution at position 329. This mutant RNA has extremely low catalytic activity. The upstream mutational site of ts709 appears to play a role in the association with the protein subunit, whereas the mutational site of ts2418 is related to the catalytic function of M1 RNA.  相似文献   

6.
The catalytic RNA moiety of (eu)bacterial RNase P is responsible for cleavage of the 5' leader sequence from precursor tRNAs. We report the sequence, the catalytic properties, and a phylogenetic-comparative structural analysis of the RNase P RNA from Mycoplasma fermentans, at 276 nt the smallest known RNase P RNA. This RNA is noteworthy in that it lacks a stem-loop structure (helix P12) that was thought previously to be universally present in bacterial RNase P RNAs. This finding suggests that helix P12 is not required for catalytic activity in vivo. In order to test this possibility in vitro, the kinetic properties of M. fermentans RNase P RNA and a mutant Escherichia coli RNase P RNA that was engineered to lack helix P12 were determined. These RNase P RNAs are catalytically active with efficiencies (Kcat/Km) comparable to that of native E. coli RNase P RNA. These results show that helix P12 is dispensable in vivo in some organisms, and therefore is unlikely to be essential for the mechanism of RNase P action. The notion that all phylogenetically volatile structures in RNase P RNA are dispensable for the catalytic mechanism was tested. A synthetic RNA representing the phylogenetic minimum RNase P RNA was constructed by deleting all evolutionarily variable structures from the M. fermentans RNA. This simplified RNA (Micro P RNA) was catalytically active in vitro with approximately 600-fold decrease in catalytic efficiency relative to the native RNA.  相似文献   

7.
8.
The protein subunit of Escherichia coli ribonuclease P (which has a cysteine residue at position 113) and its single cysteine-substituted mutant derivatives (S16C/C113S, K54C/C113S and K66C/C113S) have been modified using a sulfhydryl-specific iron complex of EDTA-2- aminoethyl 2-pyridyl disulfide (EPD-Fe). This reaction converts C5 protein, or its single cysteine-substituted mutant derivatives, into chemical nucleases which are capable of cleaving the cognate RNA ligand, M1 RNA, the catalytic RNA subunit of E. coli RNase P, in the presence of ascorbate and hydrogen peroxide. Cleavages in M1 RNA are expected to occur at positions proximal to the site of contact between the modified residue (in C5 protein) and the ribose units in M1 RNA. When EPD-Fe was used to modify residue Cys16 in C5 protein, hydroxyl radical-mediated cleavages occurred predominantly in the P3 helix of M1 RNA present in the reconstituted holoenzyme. C5 Cys54-EDTA-Fe produced cleavages on the 5' strand of the P4 pseudoknot of M1 RNA, while the cleavages promoted by C5 Cys66-EDTA-Fe were in the loop connecting helices P18 and P2 (J18/2) and the loop (J2/4) preceding the 3' strand of the P4 pseudoknot. However, hydroxyl radical-mediated cleavages in M1 RNA were not evident with Cys113-EDTA-Fe, perhaps indicative of Cys113 being distal from the RNA-protein interface in the RNase P holoenzyme. Our directed hydroxyl radical-mediated footprinting experiments indicate that conserved residues in the RNA and protein subunit of the RNase-P holoenzyme are adjacent to each other and provide structural information essential for understanding the assembly of RNase P.  相似文献   

9.
RNase P is involved in processing the 5⿲ end of pre-tRNA molecules. Bacterial RNase P contains a catalytic RNA subunit and a protein subunit. In this study, we have analyzed the residues in RNase P protein of M. tuberculosis that differ from the residues generally conserved in other bacterial RNase Ps. The residues investigated in the current study include the unique residues, Val27, Ala70, Arg72, Ala77, and Asp124, and also Phe23 and Arg93 which have been found to be important in the function of RNase P protein components of other bacteria. The selected residues were individually mutated either to those present in other bacterial RNase P protein components at respective positions or in some cases to alanine. The wild type and mutant M. tuberculosis RNase P proteins were expressed in E. coli, purified, used to reconstitute holoenzymes with wild type RNA component in vitro, and functionally characterized. The Phe23Ala and Arg93Ala mutants showed very poor catalytic activity when reconstituted with the RNA component. The catalytic activity of holoenzyme with Val27Phe, Ala70Lys, Arg72Leu and Arg72Ala was also significantly reduced, whereas with Ala77Phe and Asp124Ser the activity of holoenzyme was similar to that with the wild type protein. Although the mutants did not suffer from any binding defects, Val27Phe, Ala70Lys, Arg72Ala and Asp124Ser were less tolerant towards higher temperatures as compared to the wild type protein. The Km of Val27Phe, Ala70Lys, Arg72Ala and Ala77Phe were >2-fold higher than that of the wild type, indicating the substituted residues to be involved in substrate interaction. The study demonstrates that residues Phe23, Val27 and Ala70 are involved in substrate interaction, while Arg72 and Arg93 interact with other residues within the protein to provide it a functional conformation.  相似文献   

10.
11.
Yool Kim 《FEBS letters》2009,583(2):419-22372
Escherichia coli RNase P is a ribonucleoprotein composed of a large RNA subunit (M1 RNA) and a small protein subunit (C5 protein). We examined if C5 protein plays a role in maintaining metabolic stability of M1 RNA. The sequestration of C5 protein available for M1 RNA binding reduced M1 RNA stability in vivo, and its reduced stability was recovered via overexpression of C5 protein. In addition, M1 RNA was rapidly degraded in a temperature-sensitive C5 protein mutant strain at non-permissive temperatures. Collectively, our results demonstrate that the C5 protein metabolically stabilizes M1 RNA in the cell.  相似文献   

12.
RNase P processes the 5'-end of tRNAs. An essential catalytic RNA has been demonstrated in Bacteria, Archaea and the nuclei of most eukaryotes; an organism-specific number of proteins complement the holoenzyme. Nuclear RNase P from yeast and humans is well understood and contains an RNA, similar to the sister enzyme RNase MRP. In contrast, no protein subunits have yet been identified in the plant enzymes, and the presence of a nucleic acid in RNase P is still enigmatic. We have thus set out to identify and characterize the subunits of these enzymes in two plant model systems. Expression of the two known Arabidopsis MRP RNA genes in vivo was verified. The first wheat MRP RNA sequences are presented, leading to improved structure models for plant MRP RNAs. A novel mRNA encoding the central RNase P/MRP protein Pop1p was identified in Arabidopsis, suggesting the expression of distinct protein variants from this gene in vivo. Pop1p-specific antibodies precipitate RNase P activity and MRP RNAs from wheat extracts. Our results provide evidence that in plants, Pop1p is associated with MRP RNAs and with the catalytic subunit of RNase P, either separately or in a single large complex.  相似文献   

13.
Ribonuclease P (RNase P) is an essential endoribonuclease for which the best-characterized function is processing the 5' leader of pre-tRNAs. Compared to bacterial RNase P, which contains a single small protein subunit and a large catalytic RNA subunit, eukaryotic nuclear RNase P is more complex, containing nine proteins and an RNA subunit in Saccharomyces cerevisiae. Consistent with this, nuclear RNase P has been shown to possess unique RNA binding capabilities. To understand the unique molecular recognition of nuclear RNase P, the interaction of S. cerevisiae RNase P with single-stranded RNA was characterized. Unstructured, single-stranded RNA inhibits RNase P in a size-dependent manner, suggesting that multiple interactions are required for high affinity binding. Mixed-sequence RNAs from protein-coding regions also bind strongly to the RNase P holoenzyme. However, in contrast to poly(U) homopolymer RNA that is not cleaved, a variety of mixed-sequence RNAs have multiple preferential cleavage sites that do not correspond to identifiable consensus structures or sequences. In addition, pre-tRNA(Tyr), poly(U)(50) RNA, and mixed-sequence RNA cross-link with purified RNase P in the RNA subunit Rpr1 near the active site in "Conserved Region I," although the exact positions vary. Additional contacts between poly(U)(50) and the RNase P proteins Rpr2p and Pop4p were identified. We conclude that unstructured RNAs interact with multiple protein and RNA contacts near the RNase P RNA active site, but that cleavage depends on the nature of interaction with the active site.  相似文献   

14.
Ribonuclease P (RNase P) is a catalytic ribonucleoprotein (RNP) essential for tRNA biosynthesis. In Escherichia coli, this RNP complex is composed of a catalytic RNA subunit, M1 RNA, and a protein cofactor, C5 protein. Using the sulfhydryl-specific reagent (1-oxyl-2,2,5, 5-tetramethyl-Delta3-pyrroline-3-methyl)methanethiosulfonate (MTSL), we have introduced a nitroxide spin label individually at six genetically engineered cysteine residues (i.e., positions 16, 21, 44, 54, 66, and 106) and the native cysteine residue (i.e., position 113) in C5 protein. The spin label covalently attached to any protein is sensitive to structural changes in its microenvironment. Therefore, we expected that if the spin label introduced at a particular position in C5 protein was present at the RNA-protein interface, the electron paramagnetic resonance (EPR) spectrum of the spin label would be altered upon binding of the spin-labeled C5 protein to M1 RNA. The EPR spectra observed with the various MTSL-modified mutant derivatives of C5 protein indicate that the spin label attached to the protein at positions 16, 44, 54, 66, and 113 is immobilized to varying degrees upon addition of M1 RNA but not in the presence of a catalytically inactive, deletion derivative of M1 RNA. In contrast, the spin label attached to position 21 displays an increased mobility upon binding to M1 RNA. The results from this EPR spectroscopy-based approach together with those from earlier studies identify residues in C5 protein which are proximal to M1 RNA in the RNase P holoenzyme complex.  相似文献   

15.
Developing RNase P ribozymes for gene-targeting and antiviral therapy   总被引:5,自引:0,他引:5  
RNase P, a tRNA processing enzyme, contains both RNA and protein subunits. M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, recognizes its target RNA substrate mainly on the basis of its structure and cleaves a double stranded RNA helix at the 5' end that resembles the acceptor stem and T-stem structure of its natural tRNA substrate. Accordingly, a guide sequence (GS) can be covalently attached to the M1 RNA to generate a sequence specific ribozyme, M1GS RNA. M1GS ribozyme can target any mRNA sequence of choice that is complementary to its guide sequence. Recent studies have shown that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1 and human cytomegalovirus, and the BCR-ABL oncogenic mRNA in vitro and effectively reduce the expression of these mRNAs in cultured cells. Moreover, an in vitro selection scheme has been developed to select for M1 GS ribozyme variants with more efficient catalytic activity in cleaving mRNAs. When expressed in cultured cells, these selected ribozymes also show an enhance ability to inhibit viral gene expression and growth. These recent results demonstrate the feasibility of developing the M1GS ribozyme-based technology as a promising gene targeting approach for basic research and clinical therapeutic application.  相似文献   

16.
To study the effect proteins have on the catalysis and evolution of RNA enzymes, we simulated evolution of RNase P catalytic M1 RNA in vitro, in the presence and absence of its C5 protein cofactor. In the presence of C5, functional M1 sequence variants (not catalytically active in the absence of C5) were selected in addition to those identical to M1. C5 maintains the catalytically active structure of the variants and allows for an enhanced spectrum of M1 molecules to function in the context of a ribonucleoprotein (RNP) complex. The generation of an RNP enzyme, requiring both RNA and protein components, from a catalytically active RNA molecule has implications for how modern RNP complexes evolved from ancestral RNAs.  相似文献   

17.
The L15 region of Escherichia coli RNase P RNA forms two Watson-Crick base pairs with precursor tRNA 3'-CCA termini (G292-C75 and G293-C74). Here, we analyzed the phenotypes associated with disruption of the G292-C75 or G293-C74 pair in vivo. Mutant RNase P RNA alleles (rnpBC292 and rnpBC293) caused severe growth defects in the E. coli rnpB mutant strain DW2 and abolished growth in the newly constructed mutant strain BW, in which chromosomal rnpB expression strictly depended on the presence of arabinose. An isosteric C293-G74 base pair, but not a C292-G75 pair, fully restored catalytic performance in vivo, as shown for processing of precursor 4.5S RNA. This demonstrates that the base identity of G292, but not G293, contributes to the catalytic process in vivo. Activity assays with mutant RNase P holoenzymes assembled in vivo or in vitro revealed that the C292/293 mutations cause a severe functional defect at low Mg2+ concentrations (2 mM), which we infer to be on the level of catalytically important Mg2+ recruitment. At 4.5 mM Mg2+, activity of mutant relative to the wild-type holoenzyme, was decreased only about twofold, but 13- to 24-fold at 2 mM Mg2+. Moreover, our findings make it unlikely that the C292/293 phenotypes include significant contributions from defects in protein binding, substrate affinity, or RNA degradation. However, native PAGE experiments revealed nonidentical RNA folding equilibria for the wild-type versus mutant RNase P RNAs, in a buffer- and preincubation-dependent manner. Thus, we cannot exclude that altered folding of the mutant RNAs may have also contributed to their in vivo defect.  相似文献   

18.
RNase P recognizes many different precursor tRNAs as well as other substrates and cleaves all of them accurately at the expected position. RNase P recognizes the tRNA structure of the precursor tRNA by a set of interactions between the catalytic RNA subunit and the T- and acceptor-stems mainly, although residues in the 5-leader sequence as well as the 3-terminal CCA are important. These conclusions have been reached by several studies on mutant precursor tRNAs as well as cross-linking studies between RNase P RNA and precursor tRNAs. The protein subunit of RNase P seems also to affect the way that the substrate is recognized as well as the range of substrates that can be used by RNase P, although the protein does not seem to interact directly with the substrates. The interaction between the protein and RNA subunits of RNase P has been extensively studiedin vitro. The protein subunit sequence is not highly conserved among bacteria, however different proteins are functionally equivalent as heterologous reconstitution of the RNase P holoenzyme can be achieved in many cases.Abbreviations C5 protein protein subunit fromE. coli RNase P - EGS external guide sequence - M1 RNA RNA subunit formE. coli RNase P - ptRNA precursor tRNA - RNase P ribonuclease P  相似文献   

19.
Seven sequence-specific ribozymes (M1GS RNAs) derived in vitro from the catalytic RNA subunit of Escherichia coli RNase P and targeting the mRNAs transcribed by the UL54 gene encoding the DNA polymerase of human cytomegalovirus were screened from 11 ribozymes that were designed based on four rules: (1) the NCCA-3′ terminal must be unpaired with the substrate; (2) the guide sequence (GS) must be at least 12 nt in length; (3) the eighth nucleotide must be U, counting from the site-1; and (4) around the cleavage site, the sites -1/ 1/ 2 must be U/G/C or C/G/C. Further investigation of the factors affecting the cleavage effect and the optimal ratio for M1GS/substrate was carried out. It was determined that the optimal ratio for M1GS/substrate was 2:1 and too much M1GS led to substrate degrading. As indicated above, several M1GS that cleaved HCMV UL54 RNA segments in vitro were successfully designed and constructed.Our studies support the use of ribozyme M1GS as antisense molecules to silence HCMV mRNA in vitro, and using the selection procedure as a general approach for the engineering of RNase P ribozymes.  相似文献   

20.
Escherichia coli RNase P derivatives were evolved in vitro for DNA cleavage activity. Ribonucleoproteins sampled after ten generations of selection show a >400-fold increase in the first-order rate constant (k(cat)) on a DNA substrate, reflecting a significant improvement in the chemical cleavage step. This increase is offset by a reduction in substrate binding, as measured by K(M). We trace the catalytic enhancement to two ubiquitous A-->U sequence changes at positions 136 and 333 in the M1 RNA component, positions that are phylogenetically conserved in the Eubacteria. Furthermore, although the mutations are located in different folding domains of the catalytic RNA, the first in the substrate binding domain, the second near the catalytic core, their effect on catalytic activity is significantly influenced by the presence of the C5 protein. The activity of the evolved ribonucleoproteins on both pre-4.5 S RNA and on an RNA oligo substrate remain at wild-type levels. In contrast, improved DNA cleavage activity is accompanied by a 500-fold decrease in pre-tRNA cleavage efficiency (k(cat)/K(M)). The presence of the C5 component does not buffer this tradeoff in catalytic activities, despite the in vivo role played by the C5 protein in enhancing the substrate versatility of RNase P. The change at position 136, located in the J11/12 single-stranded region, likely alters the geometry of the pre-tRNA-binding cleft and may provide a functional explanation for the observed tradeoff. These results thus shed light both on structure/function relations in E. coli RNase P and on the crucial role of proteins in enhancing the catalytic repertoire of RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号