首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) is an essential component of the splicing machinery that is composed of two protein subunits, the 35 kDa U2AF35 (U2AF1) and the 65 kDa U2AF65 (U2AF2). U2AF interacts with various splicing factors within this machinery. Here we expand the list of mammalian splicing factors that are known to interact with U2AF65 as well as the list of nuclear proteins not known to participate in splicing that interact with U2AF65. Using a yeast two-hybrid system, we found fourteen U2AF65-interacting proteins. The validity of the screen was confirmed by identification of five known U2AF65-interacting proteins, including its heterodimeric partner, U2AF35. In addition to binding these known partners, we found previously unrecognized U2AF65 interactions with four splicing-related proteins (DDX39, SFRS3, SFRS18, SNRPA), two zinc finger proteins (ZFP809 and ZC3H11A), a U2AF65 homolog (RBM39), and two other regulatory proteins (DAXX and SERBP1). We report which regions of U2AF65 each of these proteins interacts with and we discuss their potential roles in regulation of pre-mRNA splicing, 3′-end mRNA processing, and U2AF65 sub-nuclear localization. These findings suggest expanded roles for U2AF65 in both splicing and non-splicing functions.  相似文献   

2.
3.
The human La (SS-B) autoantigen is an abundantly expressed putative RNA chaperone, functioning in various intracellular processes involving RNA. To further explore the molecular mechanisms by which La functions in these processes, we performed large-scale immunoprecipitations of La from HeLa S100 extracts using the anti-La monoclonal antibody SW5. La-associated proteins were subsequently identified by sequence analysis. This approach allowed the identification of DDX15 as a protein interacting with La. DDX15, the human ortholog of yeast Prp43, is a member of the superfamily of DEAH-box RNA helicases that appeared to interact with La both in vivo and in vitro. The region needed for the interaction with La partly overlaps the DEAH-box domain of DDX15. Immunofluorescence data indicated that endogenous DDX15 accumulates in U snRNP containing nuclear speckles in HEp-2 cells. Surprisingly DDX15 also accumulates in the nucleoli of HEp-2 cells. Moreover, DDX15 and La seem to colocalize in the nucleoli. Regions of DDX15 involved in nuclear, nuclear speckle, and nucleolar localization are located within the N- and C-terminal regions flanking the DEAH-box. RNA coprecipitation experiments indicated that DDX15 is associated with spliceosomal U small nuclear RNAs in HeLa cell extracts. The possible functional implications of the interaction between La and DDX15 are discussed.  相似文献   

4.
The primary structure of the 200 kDa protein of purified HeLa U5 snRNPs (U5-200kD) was characterized by cloning and sequencing of its cDNA. In order to confirm that U5-200kD is distinct from U5-220kD we demonstrate by protein sequencing that the human U5-specific 220 kDa protein is homologous to the yeast U5-specific protein Prp8p. A 246 kDa protein (Snu246p) homologous to U5-200kD was identified in Saccharomyces cerevisiae. Both proteins contain two conserved domains characteristic of the DEXH-box protein family of putative RNA helicases and RNA-stimulated ATPases. Antibodies raised against fusion proteins produced from fragments of the cloned mammalian cDNA interact specifically with the HeLa U5-200kD protein on Western blots and co-immunoprecipitate U5 snRNA and to a lesser extent U4 and U6 snRNAs from HeLa snRNPs. Similarly, U4, U5 and U6 snRNAs can be co-immunoprecipitated from yeast splicing extracts containing an HA-tagged derivative of Snu246p with HA-tag specific antibodies. U5-200kD and Snu246p are thus the first putative RNA helicases shown to be intrinsic components of snRNPs. Disruption of the SNU246 gene in yeast is lethal and leads to a splicing defect in vivo, indicating that the protein is essential for splicing. Anti-U5-200kD antibodies specifically block the second step of mammalian splicing in vitro, demonstrating for the first time that a DEXH-box protein is involved in mammalian splicing. We propose that U5-200kD and Snu246p promote one or more conformational changes in the dynamic network of RNA-RNA interactions in the spliceosome.  相似文献   

5.
6.
SR45 is a serine/arginine-rich (SR)-like protein with two arginine/serine-rich (RS) domains. We have previously shown that SR45 regulates alternative splicing (AS) by differential selection of 5' and 3' splice sites. However, it is unknown how SR45 regulates AS. To gain mechanistic insights into the roles of SR45 in splicing, we screened a yeast two-hybrid library with SR45. This screening resulted in the isolation of two spliceosomal proteins, U1-70K and U2AF(35) b that are known to function in 5' and 3' splice site selection, respectively. This screen not only confirmed our prior observation that U1-70K and SR45 interact, but also helped to identify an additional interacting partner (U2AF(35) ). In vitro and in vivo analyses revealed an interaction of SR45 with both paralogs of U2AF(35) . Furthermore, we show that the RS1 and RS2 domains of SR45, and not the RNA recognition motif (RRM) domain, associate independently with both U2AF(35) proteins. Interaction studies among U2AF(35) paralogs and between U2AF(35) and U1-70K revealed that U2AF(35) can form homo- or heterodimers and that U2AF(35) proteins can associate with U1-70K. Using RNA probes from SR30 intron 10, whose splicing is altered in the sr45 mutant, we show that SR45 and U2AF(35) b bind to different parts of the intron, with a binding site for SR45 in the 5' region and two binding regions, each ending with a known 3' splice site, for U2AF(35) b. These results suggest that SR45 recruits U1snRNP and U2AF to 5' and 3' splice sites, respectively, by interacting with pre-mRNA, U1-70K and U2AF(35) and modulates AS.  相似文献   

7.
Serine/arginine-rich (SR) protein and its homologues (SR-related proteins) are important regulators of constitutive and/or alternative splicing and other aspects of mRNA metabolism. To clarify the contribution of a plant-specific and stress-responsive SR-related protein, atSR45a, to splicing events, here we analyzed the interaction of atSR45a with the other splicing factors by conducting a yeast two-hybrid assay and a bimolecular fluorescence complementation analysis. The atSR45a-1a and -2 proteins, the presumed mature forms produced by alternative splicing of atSR45a, interacted with U1-70K and U2AF35b, splicing factors for the initial definition of 5′ and 3′ splice sites, respectively, in the early stage of spliceosome assembly. Both proteins also interacted with themselves, other SR proteins (atSR45 and atSCL28), and PRP38-like protein, a homologue of the splicing factor essential for cleavage of the 5′ splice site. The mapping of deletion mutants of atSR45a proteins revealed that the C-terminal arginine/serine-rich (RS) domain of atSR45a proteins are required for the interaction with U1-70K, U2AF35b, atSR45, atSCL28, PRP38-like protein, and themselves, and the N-terminal RS domain enhances the interaction efficiency. Interestingly, the distinctive N-terminal extension in atSR45a-1a protein, but not atSR45a-2 protein, inhibited the interaction with these splicing factors. These findings suggest that the atSR45a proteins help to form the bridge between 5′ and 3′ splice sites in the spliceosome assembly and the efficiency of spliceosome formation is affected by the expression ratio of atSR45a-1a and atSR45a-2.  相似文献   

8.
The SR family proteins and SR-related polypeptides are important regulators of pre-mRNA splicing. A novel SR-related protein of an apparent molecular mass of 53 kDa was isolated in a gene trap screen that identifies proteins which localize to the nuclear speckles. This novel protein possesses an arginine- and serine-rich domain and was termed SRrp53 (for SR-related protein of 53 kDa). In support for a role of this novel RS-containing protein in pre-mRNA splicing, we identified the mouse ortholog of the Saccharomyces cerevisiae U1 snRNP-specific protein Luc7p and the U2AF65-related factor HCC1 as interacting proteins. In addition, SRrp53 is able to interact with some members of the SR family of proteins and with U2AF35 in a yeast two-hybrid system and in cell extracts. We show that in HeLa nuclear extracts immunodepleted of SRrp53, the second step of pre-mRNA splicing is blocked, and recombinant SRrp53 is able to restore splicing activity. SRrp53 also regulates alternative splicing in a concentration-dependent manner. Taken together, these results suggest that SRrp53 is a novel SR-related protein that has a role both in constitutive and in alternative splicing.  相似文献   

9.
Protein kinase A (PKA) is targeted to distinct subcellular localizations by specific protein kinase A anchoring proteins (AKAPs). AKAPs are divided into subclasses based on their ability to bind type I or type II PKA or both. Dual-specificity AKAPs were recently reported to have an additional PKA binding determinant called the RI specifier region. A bioinformatic search with the consensus RI specifier region identified a novel AKAP, the splicing factor arginine/serine-rich 17A (SFRS17A). Here, we show by a variety of protein interaction assays that SFRS17A binds both type I and type II PKA in vitro and inside cells, demonstrating that SFRS17A is a dual-specific AKAP. Moreover, immunofluorescence experiments show that SFRS17A colocalizes with the catalytic subunit of PKA as well as the splicing factor SC35 in splicing factor compartments. Using the E1A minigene splicing assay, we found that expression of wild type SFRS17A conferred regulation of E1A alternative splicing, whereas the mutant SFRS17A, which is unable to bind PKA, did not. Our data suggest that SFRS17A is an AKAP involved in regulation of pre-mRNA splicing possibly by docking a pool of PKA in splicing factor compartments.  相似文献   

10.
Retrotransposition of the budding yeast long terminal repeat retrotransposon Ty3 is activated during mating. In this study, proteins that associate with Ty3 Gag3 capsid protein during virus-like particle (VLP) assembly were identified by mass spectrometry and screened for roles in mating-stimulated retrotransposition. Components of RNA processing bodies including DEAD box helicases Dhh1/DDX6 and Ded1/DDX3, Sm-like protein Lsm1, decapping protein Dcp2, and 5’ to 3’ exonuclease Xrn1 were among the proteins identified. These proteins associated with Ty3 proteins and RNA, and were required for formation of Ty3 VLP retrosome assembly factories and for retrotransposition. Specifically, Dhh1/DDX6 was required for normal levels of Ty3 genomic RNA, and Lsm1 and Xrn1 were required for association of Ty3 protein and RNA into retrosomes. This role for components of RNA processing bodies in promoting VLP assembly and retrotransposition during mating in a yeast that lacks RNA interference, contrasts with roles proposed for orthologous components in animal germ cell ribonucleoprotein granules in turnover and epigenetic suppression of retrotransposon RNAs.  相似文献   

11.
12.
van Nues RW  Beggs JD 《Genetics》2001,157(4):1451-1467
Mapping of functional protein interactions will help in understanding conformational rearrangements that occur within large complexes like spliceosomes. Because the U5 snRNP plays a central role in pre-mRNA splicing, we undertook exhaustive two-hybrid screening with Brr2p, Prp8p, and other U5 snRNP-associated proteins. DExH-box protein Brr2p interacted specifically with five splicing factors: Prp8p, DEAH-box protein Prp16p, U1 snRNP protein Snp1p, second-step factor Slu7p, and U4/U6.U5 tri-snRNP protein Snu66p, which is required for splicing at low temperatures. Co-immunoprecipitation experiments confirmed direct or indirect interactions of Prp16p, Prp8p, Snu66p, and Snp1p with Brr2p and led us to propose that Brr2p mediates the recruitment of Prp16p to the spliceosome. We provide evidence that the prp8-1 allele disrupts an interaction with Brr2p, and we propose that Prp8p modulates U4/U6 snRNA duplex unwinding through another interaction with Brr2p. The interactions of Brr2p with a wide range of proteins suggest a particular function for the C-terminal half, bringing forward the hypothesis that, apart from U4/U6 duplex unwinding, Brr2p promotes other RNA rearrangements, acting synergistically with other spliceosomal proteins, including the structurally related Prp2p and Prp16p. Overall, these protein interaction studies shed light on how splicing factors regulate the order of events in the large spliceosome complex.  相似文献   

13.
DDX3 is involved in RNA transport, translational control, proliferation of RNA viruses, and cancer progression. From yeast two-hybrid screening using the C-terminal region of DDX3 as a bait, the DEAD-box RNA helicase DDX5 was cloned. In immunofluorescence analysis, DDX3 and DDX5 were mainly co-localized in the cytoplasm. Interestingly, cytoplasmic levels of DDX5 increased in the G(2) /M phase and consequently protein-protein interaction also increased in the cytoplasmic fraction. DDX3 was highly phosphorylated at its serine, threonine, and tyrosine residues in the steady state, but not phosphorylated at the serine residue(s) in the G(2) /M phase. DDX5 was less phosphorylated in the G(1) /S phase; however, it was highly phosphorylated at serine, threonine, and tyrosine residues in the G(2) /M phase. PP2A treatment of the cytoplasmic lysate from G(2) /M phase cells positively affected the interaction between DDX3 and DDX5, whereas, PTP1B treatment did not. In an analysis involving recombinant His-DDX3 and His-DDX5, PP2A pretreatment of His-DDX5 increased the interaction with endogenous DDX3, and vice versa. Furthermore, the results of GST pull-down experiments support the conclusion that dephosphorylation of serine and/or threonine residues in both proteins enhanced protein-protein interactions. UV cross-linking experiments showed that DDX3 and DDX5 are involved in mRNP export. Additionally, DDX3 knockdown blocked the shuttling of DDX5 to the nucleus. These data demonstrate a novel interaction between DDX3 and DDX5 through the phosphorylation of both proteins, especially in the G(2) /M phase, and suggest a novel combined mechanism of action, involving RNP remodeling and splicing, for DEAD-box RNA helicases involved in mRNP export.  相似文献   

14.
U2核糖核蛋白小体辅助因子(U2AF)65是参与前体mRNA剪接的重要辅助因子,前体RNA生成之初,U1核糖核蛋白小体(snRNP)结合到内含子的5'剪接位点,U2AF65和U2AF35分别结合到多聚嘧啶序列和3'剪接位点,剪接因子1(SF1)结合到分支位点是剪接体形成的第一步。U2AF的存在又辅助U2snRNP代替SF1结合到分支位点,使剪接反应顺利进行。最近几年,发现基因组中存在一些U2AF65的旁系同源基因序列。这些旁系同源基因由祖先基因经连续复制而横向形成,复制出的基因副本经历了各自的进化途径,最终它们在结构和功能上有相似之处,又各有独特之处。我们简要讨论了U2AF65、PUF60、CAPERα和CAPERβ这4种同源蛋白的发现过程、结构特征、自身的多样性、基因的进化和生物学功能。  相似文献   

15.
Prp2 is an RNA-dependent ATPase that activates the spliceosome before the first transesterification reaction of pre-mRNA splicing. Prp2 has extensive homology throughout the helicase domain characteristic of DEXD/H-box helicases and a conserved carboxyl-terminal domain also found in the spliceosomal helicases Prp16, Prp22, and Prp43. Despite the extensive homology shared by these helicases, each has a distinct, sequential role in splicing; thus, uncovering the determinants of specificity becomes crucial to the understanding of Prp2 and the other DEAH-splicing helicases. Mutations in an 11-mer near the C-terminal end of Prp2 eliminate its spliceosome binding and splicing activity. Here we show that a helicase-associated protein interacts with this domain and that this interaction contributes to the splicing process. First, a genome-wide yeast two-hybrid screen using Prp2 as bait identified Spp2, which contained a motif with glycine residues found in a number of RNA binding proteins. SPP2 was originally isolated as a genetic suppressor of a prp2 mutant. In a reciprocal screen, Spp2 specifically pulled out the C-terminal half of Prp2. Mutations in the Prp2 C-terminal 11-mer that disrupted function or spliceosome binding also disrupted Spp2 interaction. A screen of randomly mutagenized SPP2 clones identified an Spp2 protein with a mutation in the G patch that could restore interaction with Prp2 and enhanced splicing in a prp2 mutant strain. The study identifies a potential mechanism for Prp2 specificity mediated through a unique interaction with Spp2 and elucidates a role for a helicase-associated protein in the binding of a DEXD/H-box protein to the spliceosome.  相似文献   

16.
17.
RNA biogenesis is essential and vital for accurate expression of genes. It is obvious that cells cannot continue normal metabolism when RNA splicing is interfered with. sgt13018 is such a mutant, with partial loss of function of GAMETOPHYTIC FACTOR 1 (GFA1); a gene likely involved in RNA biogenesis in Arabidopsis. The mutant is featured in the phenotype of diminished female gametophyte development at stage FG5 and is associated with the arrest of early embryo development in Arabidopsis. Bioinformatics data showed that homoiogs of gene GFA1 in yeast and human encode putative U5 snRNPspecific proteins required for pre-mRNA splicing. Furthermore, the result of yeast two-hybrid assay indicated that GFA1 physically interacted with AtBrr2 and AtPrp8, the putative U5 snRNP components, of Arabidopsis. This investigation suggests that GFA1 is involved in mRNA biogenesis through interaction with AtBrr2 and AtPrp8 and functions in megagametogeneeis and embryogenesis in plant.  相似文献   

18.
The essential splicing factor U2AF (U2 auxiliary factor) is a heterodimer composed of 65-kDa (U2AF(65)) and 35-kDa (U2AF(35)) subunits. U2AF(35) has multiple functions in pre-mRNA splicing. First, U2AF(35) has been shown to function by directly interacting with the AG at the 3' splice site. Second, U2AF(35) is thought to play a role in the recruitment of U2AF(65) by serine-arginine-rich (SR) proteins in enhancer-dependent splicing. It has been proposed that the physical interaction between the arginine-serine-rich (RS) domain of U2AF(35) and SR proteins is important for this activity. However, other data suggest that this may not be the case. Here, we report the identification of a mammalian gene that encodes a 26-kDa protein bearing strong sequence similarity to U2AF(35), designated U2AF(26). The N-terminal 187 amino acids of U2AF(35) and U2AF(26) are nearly identical. However, the C-terminal domain of U2AF(26) lacks many characteristics of the U2AF(35) RS domain and, therefore, might be incapable of interacting with SR proteins. We show that U2AF(26) can associate with U2AF(65) and can functionally substitute for U2AF(35) in both constitutive and enhancer-dependent splicing, demonstrating that the RS domain of the small U2AF subunit is not required for splicing enhancer function. Finally, we show that U2AF(26) functions by enhancing the binding of U2AF(65) to weak 3' splice sites. These studies identify U2AF(26) as a mammalian splicing factor and demonstrate that distinct U2AF complexes can participate in pre-mRNA splicing. Based on its sequence and functional similarity to U2AF(35), U2AF(26) may play a role in regulating alternative splicing.  相似文献   

19.
DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号