首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 539 毫秒
1.
A three-dimensional mathematical model of the human knee joint was developed to examine the role of single ligaments, such as an anterior cruciate ligament (ACL) graft in ACL reconstruction, on joint motion and tissue forces. The model is linear and valid for small motions about an equilibrium position. The knee joint is modeled as two rigid bodies (the femur and the tibia) interconnected by deformable structures, including the ACL or ACL graft, the cartilage layer, and the remainder of the knee tissues (modeled as a single element). The model was demonstrated for the equilibrium condition of the knee in extension with an anterior tibial force, causing anterior drawer and hyperextension. The knee stiffness matrix for this condition was measured for a human right knee in vitro. Predicted model response was compared with experimental observations. Qualitative agreement was found between model and experiment, validating the model and its assumptions. The model was then used to predict the change in graft and cartilage forces and joint motion of the knee due to an increment of load in the normal joint both after ACL removal and with various altered states simulating ACL reconstructions. Results illustrate the interdependence between loads in the ACL graft, other knee structures, and contact force. Stiffer grafts and smaller maximum unloaded length of the ligament lead to higher graft and contact forces. Changes in cartilage stiffness alter load sharing between ACL graft and other joint tissues.  相似文献   

2.
The role of the posterior tibial slope (PTS) in anterior cruciate ligament (ACL) risk of injury has been supported by many imaging studies but refuted by some in vitro works. The current investigation was carried out to compute the effect of ±5o change in PTS on knee joint biomechanics in general and ACL force/strain in particular. Two validated finite element (FE) models of the knee joint were employed; one active lower extremity musculoskeletal model including a complex FE model of the knee joint driven by in vivo kinematics/kinetics collected in gait of asymptomatic subjects, and the other its isolated unconstrained passive tibiofemoral (TF) joint considered under 1400 N compression at four different knee flexion angles (0°–45°). In the TF model, the compression force was applied at the joint mechanical balance point causing no rotations in sagittal and frontal planes.  相似文献   

3.
Quantifying the mechanical environment at the knee is crucial for developing successful rehabilitation and surgical protocols. Computational models have been developed to complement in vitro studies, but are typically created to represent healthy conditions, and may not be useful in modeling pathology and repair. Thus, the objective of this study was to create finite element (FE) models of the natural knee, including specimen-specific tibiofemoral (TF) and patellofemoral (PF) soft tissue structures, and to evaluate joint mechanics in intact and ACL-deficient conditions. Simulated gait in a whole joint knee simulator was performed on two cadaveric specimens in an intact state and subsequently repeated following ACL resection. Simulated gait was performed using motor-actuated quadriceps, and loads at the hip and ankle. Specimen-specific FE models of these experiments were developed in both intact and ACL-deficient states. Model simulations compared kinematics and loading of the experimental TF and PF joints, with average RMS differences [max] of 3.0° [8.2°] and 2.1° [8.4°] in rotations, and 1.7 [3.0] and 2.5 [5.1] mm in translations, for intact and ACL-deficient states, respectively. The timing of peak quadriceps force during stance and swing phase of gait was accurately replicated within 2° of knee flexion and with an average error of 16.7% across specimens and pathology. Ligament recruitment patterns were unique in each specimen; recruitment variability was likely influenced by variations in ligament attachment locations. ACL resections demonstrated contrasting joint mechanics in the two specimens with altered knee motion shown in one specimen (up to 5 mm anterior tibial translation) while increased TF joint loading was shown in the other (up to 400 N).  相似文献   

4.
Functional tissue engineering (FTE) approaches have shown promise in healing an injured anterior cruciate ligament (ACL) of the knee. Nevertheless, additional mechanical augmentation is needed to maintain joint stability and appropriate loading of the joint while the ACL heals. The objective of this study was to quantitatively evaluate how mechanical augmentation using sutures restores the joint kinematics as well as the distribution of loading among the ACL, medial collateral ligament, and medial meniscus (MM) in response to externally applied loads. Eight goat stifle joints were tested on a robotic/universal force-moment sensor testing system under two loading conditions: (1) a 67N anterior tibial load (ATL) and (2) a 67N ATL with 100N axial compression. For each joint, four experimental conditions were tested at 30°, 60°, and 90° of flexion: the (1) intact and (2) ACL-deficient joint, as well as following (3) suture repair of the transected ACL, and (4) augmentation using sutures passed from the femur to the tibia. Under the 67N ATL, suture augmentation could restore the anterior tibial translation (ATT) to within 3mm of the intact joint (p>0.05), representing a 54-76% improvement over suture repair (p<0.05). With the additional axial compression, the ATT and in-situ forces of the sutures following suture augmentation remained 2-3 times closer to normal (p<0.05). Also, the in-situ forces in the MM were 58-73% lower (p<0.05). Thus, suture augmentation may be helpful in combination with FTE approaches for ACL healing by providing the needed initial joint stability while lowering the loads on the MM.  相似文献   

5.
Verified computational models represent an efficient method for studying the relationship between articular geometry, soft-tissue constraint, and patellofemoral (PF) mechanics. The current study was performed to evaluate an explicit finite element (FE) modeling approach for predicting PF kinematics in the natural and implanted knee. Experimental three-dimensional kinematic data were collected on four healthy cadaver specimens in their natural state and after total knee replacement in the Kansas knee simulator during a simulated deep knee bend activity. Specimen-specific FE models were created from medical images and CAD implant geometry, and included soft-tissue structures representing medial–lateral PF ligaments and the quadriceps tendon. Measured quadriceps loads and prescribed tibiofemoral kinematics were used to predict dynamic kinematics of an isolated PF joint between 10° and 110° femoral flexion. Model sensitivity analyses were performed to determine the effect of rigid or deformable patellar representations and perturbed PF ligament mechanical properties (pre-tension and stiffness) on model predictions and computational efficiency.Predicted PF kinematics from the deformable analyses showed average root mean square (RMS) differences for the natural and implanted states of less than 3.1° and 1.7 mm for all rotations and translations. Kinematic predictions with rigid bodies increased average RMS values slightly to 3.7° and 1.9 mm with a five-fold decrease in computational time. Two-fold increases and decreases in PF ligament initial strain and linear stiffness were found to most adversely affect kinematic predictions for flexion, internal–external tilt and inferior–superior translation in both natural and implanted states. The verified models could be used to further investigate the effects of component alignment or soft-tissue variability on natural and implant PF mechanics.  相似文献   

6.
The relationships between the lengths of the ligaments and kinematics of the knee and quadriceps load, for low to physiologic levels of quadriceps loads, have not previously been studied. We investigated the effects of increasing levels of quadriceps force, necessary to balance increasing levels of externally applied flexion moments, on the kinematics of the tibiofemoral joint and on the separation distances between insertions of selected fibers of the major ligaments of the knee in twelve cadavera. Static measurements were made using a six-degree-of-freedom digitizer for flexion angles ranging from 0 to 120 deg in 15 deg increments. Quadriceps generated extension of the knee was performed by applying loads to the quadriceps tendon to equilibrate each of four magnitudes of external flexion moments equivalent to 8.33, 16.67, 25.00, and 33.33 percent of values previously reported for maximum isometric extension moments. The magnitude of quadriceps force increased linearly (p < 0.0001) as external flexion moment increased throughout the entire range of flexion. Anterior translation, internal rotation, and abduction of the tibia increased linearly (p < 0.0001, p < 0.001, p < 0.001) as external flexion moment and, hence, quadriceps load increased. For the fibers studied, the anterior cruciate ligament (p < 0.0076), posterior cruciate ligament (p < 0.0001), and medial collateral ligament (p < 0.0383) lengthened linearly while the lateral collateral ligament (p < 0.0124) shortened linearly as quadriceps load increased. Based on these results for low to physiologic levels of quadriceps loads, it is reasonable to assume that the ligament lengths or knee kinematics expected with higher quadriceps loads can be extrapolated.  相似文献   

7.
Squatting is a commonly prescribed exercise following reconstruction of the anterior cruciate ligament (ACL). The objective of this paper was to measure the in vivo strain patterns of the normal ACL and the load at the knee for the simple squat and for squatting with a “sport cord”. A sport cord is a large elastic rubber tube used for added resistance. Strain patterns were deduced using displacement data from a Hall Effect Strain Transducer (HEST), while joint loads were determined by a mathematical model with inputs from a force plate and electrogoniometers. ACL strain for the free squat in one subject had a maximum of 2% at a knee angle of 10° and was slack for knee angles >17°. In squatting with a sport cord, peak strain was 1% at 10° and was slack at knee angles >14°. Since these peak strains are low, squatting appears to be a safe exercise for conservative rehabilitation of ACL reconstruction patients. In addition, the sport cord is a recommended augmentation to the activity. We believe that the decrease in strain with the sport cord results from added joint stiffness due to greater compressive forces at the tibiofemoral joint. This greater compressive force results from the approximately 10% increase in quadriceps activity. From shear force data predicted by the mathematical model, the maximum anterior drawer force for free squatting (50 N) was considerably less than for sport cord squatting (430 N). Therefore, the value of shear force at the tibiofemoral joint only partially determines the load placed on the ACL.  相似文献   

8.
The knee joint is partially stabilized by the interaction of multiple ligament structures. This study tested the interdependent functions of the anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) by evaluating the effects of ACL deficiency on local MCL strain while simultaneously measuring joint kinematics under specific loading scenarios. A structural testing machine applied anterior translation and valgus rotation (limits 100 N and 10 N m, respectively) to the tibia of ten human cadaveric knees with the ACL intact or severed. A three-dimensional motion analysis system measured joint kinematics and MCL tissue strain in 18 regions of the superficial MCL. ACL deficiency significantly increased MCL strains by 1.8% (p<0.05) during anterior translation, bringing ligament fibers to strain levels characteristic of microtrauma. In contrast, ACL transection had no effect on MCL strains during valgus rotation (increase of only 0.1%). Therefore, isolated valgus rotation in the ACL-deficient knee was nondetrimental to the MCL. The ACL was also found to promote internal tibial rotation during anterior translation, which in turn decreased strains near the femoral insertion of the MCL. These data advance the basic structure-function understanding of the MCL, and may benefit the treatment of ACL injuries by improving the knowledge of ACL function and clarifying motions that are potentially harmful to secondary stabilizers.  相似文献   

9.
Knee joint motion and ligament forces before and after ACL reconstruction   总被引:4,自引:0,他引:4  
The goal of this in vitro study was to investigate the initial postoperative mechanical state of the knee with various types of anterior cruciate ligament (ACL) reconstructions. An experimental knee testing system was developed for the in vitro measurement of ligament forces and three-dimensional joint motion as external loads were applied to fresh knee specimens. Two groups of knee specimens were tested. In test series #1, two intraarticular reconstructions were performed in each of five specimens using semifree and free patellar tendon grafts with bone blocks. In test series #2, a more carefully controlled intraarticular reconstruction was performed in five specimens using a semifree composite graft consisting of the semitendinosus and gracilis tendons augmented with the Ligament Augmentation Device. Ligament force and joint motion data were collected as anteriorly directed tibial loads were applied to the normal joint, the joint with a cut ACL and the reconstructed joint. These knee joint states were compared on the basis of ACL or graft forces, joint motion and load sharing by the collateral ligaments. The dominate result of the study was that the forces and motions defining the mechanical state of the knee after the ACL reconstructions in both test series were highly variable and abnormal when compared to the normal knee state. The higher level of surgical control series #2 did not decrease this variability. There was a poor correlation between motion of the reconstructed knee relative to normal, and the ACL graft force. There was little consistent difference in force and motion results between the surgical procedures tested.  相似文献   

10.
In situ force in the anterior cruciate ligament (ACL) has been quantified both in vitro in response to relatively simple loads by means of robotic technology, as well as in vivo in response to more complex loads by means of force transducers and computational models. However, a methodology has been suggested to indirectly estimate the in situ forces in the ACL in a non-invasive, non-contact manner by reproducing six-degree of freedom (six-DOF) in vivo kinematics on cadaveric knees using a robotic/UFS testing system. Therefore, the objective of this study was to determine the feasibility of this approach. Kinematics from eight porcine knees (source knees) were collected at 30 degrees , 60 degrees , and 90 degrees of flexion in response to: (1) an anterior load of 100 N and (2) a valgus load of 5 N m. The average of each kinematic data set was reproduced on a separate set of eight knees (target knees). The in situ forces in the ACL were determined for both sets of knees and compared. Significant differences (rho<0.05) were found between the source knees and the target knees for all flexion angles in response to an anterior load. However, in response to valgus loads, there was no significant difference between the source knees and the target knees at 30 degrees and 90 degrees of flexion. It was noted that there was a correlation between anterior knee laxity (the distance along the displacement axis from the origin to the beginning of the linear region of the load-displacement curve) and internal-external rotation. These data suggest that in order to obtain reproducible results one needs to first match knees to knees with comparable anterior knee laxity. Thus, an estimate of the in situ forces in the ACL during in vivo activities might be obtainable using this novel methodology.  相似文献   

11.
The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.  相似文献   

12.
Gastrocnemius is a premier muscle crossing the knee, but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains less clear when compared to hamstrings and quadriceps. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait kinematics—kinetics. The tibiofemoral joint under isolated isometric contraction of gastrocnemius was subsequently analyzed at different force levels and flexion angles (0°–90°). Changes in gastrocnemius force at late stance markedly influenced hamstrings forces. Gastrocnemius acted as ACL antagonist by substantially increasing its force. Simulations under isolated contraction of gastrocnemius confirmed this role at all flexion angles, in particular, at extreme knee flexion angles (0° and 90°). Constraint on varus/valgus rotations substantially decreased this effect. Although hamstrings and gastrocnemius are both knee joint flexors, they play opposite roles in respectively protecting or loading ACL. Although the quadriceps is also recognized as antagonist of ACL, at larger joint flexion and in contrast to quadriceps, activity in gastrocnemius substantially increased ACL forces (anteromedial bundle). The fact that gastrocnemius is an antagonist of ACL should help in effective prevention and management of ACL injuries.  相似文献   

13.
This study determined in-vitro anterior cruciate ligament (ACL) force patterns and investigated the effect of external tibial loads on the ACL force patterns during simulated weight-bearing knee flexions. Nine human cadaveric knee specimens were mounted on a dynamic knee simulator, and weight-bearing knee flexions with a 100N of ground reaction force were simulated; while a robotic/universal force sensor (UFS) system was used to provide external tibial loads during the movement. Three external tibial loading conditions were simulated, including no external tibial load (termed BW only), a 50N anterior tibial force (ATF), and a 5Nm internal rotation tibial torque (ITT). The tibial and femoral kinematics was measured with an ultrasonic motion capture system. These movement paths were then accurately reproduced on a robotic testing system, and the in-situ force in the ACL was determined via the principle of superposition. The results showed that the ATF significantly increased the in-situ ACL force by up to 60% during 0-55 degrees of flexion, while the ITT did not. The magnitude of ACL forces decreased with increasing flexion angle for all loading conditions. The tibial anterior translation was not affected by the application of ATF, whereas the tibial internal rotation was significantly increased by the application of ITT. These data indicate that, in a weight-bearing knee flexion, ACL provides substantial resistance to the externally applied ATF but not to the ITT.  相似文献   

14.
ACL damage is one the most frequent causes of knee injuries and thus has long been the focus of research in biomechanics and sports medicine. Due to the anisometric geometry and functional complexity of the ACL in the knee joint, it is usually difficult to experimentally study the biomechanics of ACLs. Anatomically ACL geometry was obtained from both MR images and anatomical observations. The optimal material parameters of the ACL were obtained by using an optimization-based material identification method that minimized the differences between experimental results from ACL specimens and FE simulations. The optimal FE model simulated biomechanical responses of the ACL during complex combined injury-causing knee movements, it predicted stress concentrations on the top and middle side of the posterolateral (PL) bundles. This model was further validated by a clinical case of ACL injury diagnosed by MRI and arthroscope, it demonstrated that the locations of rupture in the patient’s knee corresponded to those where the stresses and moments were predicted to be concentrated. The result implies that varus rotation played a contributing but secondary role in injury under combined movements, the ACL elevation angle, is positive correlated with the tensional loading tolerance of the ACL.  相似文献   

15.
This study investigated the effect of hamstring co-contraction with quadriceps on the kinematics of the human knee joint and the in-situ forces in the anterior cruciate ligament (ACL) during a simulated isometric extension motion of the knee. Cadaveric human knee specimens (n = 10) were tested using the robotic universal force moment sensor (UFS) system and measurements of knee kinematics and in-situ forces in the ACL were based on reference positions on the path of passive flexion/extension motion of the knee. With an isolated 200 N quadriceps load, the knee underwent anterior and lateral tibial translation as well as internal tibial rotation with respect to the femur. Both translation and rotation increased when the knee was flexed from full extension to 30 of flexion; with further flexion, these motion decreased. The addition of 80 N antagonistic hamstrings load significantly reduced both anterior and lateral tibial translation as well as internal tibial rotation at knee flexion angles tested except at full extension. At 30 of flexion, the anterior tibial translation, lateral tibial translation, and internal tibial rotation were significantly reduced by 18, 46, and 30%, respectively (p<0.05). The in-situ forces in the ACL under the quadriceps load were found to increase from 27.8+/-9.3 N at full extension to a maximum of 44.9+/-13.8 N at 15 of flexion and then decrease to 10 N beyond 60 of flexion. The in-situ force at 15 was significantly higher than that at other flexion angles (p<0.05). The addition of the hamstring load of 80 N significantly reduced the in-situ forces in the ACL at 15, 30 and 60 of flexion by 30, 43, and 44%, respectively (p<0.05). These data demonstrate that maximum knee motion may not necessarily correspond to the highest in-situ forces in the ACL. The data also suggest that hamstring co-contraction with quadriceps is effective in reducing excessive forces in the ACL particularly between 15 and 60 of knee flexion.  相似文献   

16.
A custom knee loading apparatus (KLA), when used in conjunction with magnetic resonance imaging, enables in vivo measurement of the gross anterior laxity of the knee joint. A numerical model was applied to the KLA to understand the contribution of the individual joint structures and to estimate the stiffness of the anterior-cruciate ligament (ACL). The model was evaluated with a cadaveric study using an in situ knee loading apparatus and an ElectroForce test system. A constrained optimization solution technique was able to predict the restraining forces within the soft-tissue structures and joint contact. The numerical model presented here allowed in vivo prediction of the material stiffness parameters of the ACL in response to applied anterior loading. Promising results were obtained for in vivo load sharing within the structures. The numerical model overestimated the ACL forces by 27.61–92.71%. This study presents a novel approach to estimate ligament stiffness and provides the basis to develop a robust and accurate measure of in vivo knee joint laxity.  相似文献   

17.
Computer modeling and simulation techniques have been increasingly used to investigate anterior cruciate ligament (ACL) loading during dynamic activities in an attempt to improve our understanding of injury mechanisms and development of injury prevention programs. However, the accuracy of many of these models remains unknown and thus the purpose of this study was to compare estimates of ACL strain from a previously developed three-dimensional, data-driven model with those obtained via in vitro measurements. ACL strain was measured as the knee was cycled from approximately 10° to 120° of flexion at 20 deg s?1 with static loads of 100, 50, and 50 N applied to the quadriceps, biceps femoris and medial hamstrings (semimembranosus and semitendinosus) tendons, respectively. A two segment, five-degree-of-freedom musculoskeletal knee model was then scaled to match the cadaver’s anthropometry and in silico ACL strains were then determined based on the knee joint kinematics and moments of force. Maximum and minimum ACL strains estimated in silico were within 0.2 and 0.42% of that measured in vitro, respectively. Additionally, the model estimated ACL strain with a bias (mean difference) of ?0.03% and dynamic accuracy (rms error) of 0.36% across the flexion-extension cycle. These preliminary results suggest that the proposed model was capable of estimating ACL strains during a simple flexion-extension cycle. Future studies should validate the model under more dynamic conditions with variable muscle loading. This model could then be used to estimate ACL strains during dynamic sporting activities where ACL injuries are more common.  相似文献   

18.
Malalignment is the main cause of tibial component loosening. Implants that migrate rapidly in the first two post-operative years are likely to present aseptic loosening. It has been suggested that cancellous bone stresses can be correlated with tibial component migration. A recent study has shown that patient-specific finite element (FE) models have the power to predict the short-term behavior of tibial trays. The stresses generated within the implanted tibia are dependent on the kinematics of the joint; however, previous studies have ignored the kinematics and only applied static loads. Using explicit FE, it is possible to simultaneously predict the kinematics and stresses during a gait cycle. The aim of this study was to examine the cancellous bone strains during the stance phase of the gait cycle, for varying degrees of varus/valgus eccentric loading using explicit FE. A patient-specific model of a proximal tibia was created from CT scan images, including heterogeneous bone properties. The proximal tibia was implanted with a commercial total knee replacement (TKR) model. The stance phase of gait was simulated and the applied loads and boundary conditions were based on those used for the Stanmore knee simulator. Eccentric loading was simulated. As well as examining the tibial bone strains (minimum and maximum principal strain), the kinematics of the bone-implant construct are also reported. The maximum anterior-posterior displacements and internal-external rotations were produced by the model with 20 mm offset. The peak minimum and maximum principal strain values increased as the load was shifted laterally, reaching a maximum magnitude for -20 mm offset. This suggests that when in varus, the load transferred to the bone is shifted medially, and as the bone supporting this load is stiffer, the resulting peak bone strains are lower than when the load is shifted laterally (valgus). For this particular patient, the TKR design analyzed produced the highest cancellous bone strains when in valgus. This study has provided an insight in the variations produced in bone strain distribution when the axial load is applied eccentrically. To the authors' knowledge, this is the first time that the bone strain distribution of a proximal implanted tibia has been examined, also accounting for the kinematics of the tibio-femoral joint as part of the simulation. This approach gives greater insight into the overall performance of TKR.  相似文献   

19.
Obtaining tibio-femoral (TF) contact forces, ligament deformations and loads during daily life motor tasks would be useful to better understand the aetiopathogenesis of knee joint diseases or the effects of ligament reconstruction and knee arthroplasty. However, methods to obtain this information are either too simplified or too computationally demanding to be used for clinical application. A multibody dynamic model of the lower limb reproducing knee joint contact surfaces and ligaments was developed on the basis of magnetic resonance imaging. Several clinically relevant conditions were simulated, including resistance to hyperextension, varus–valgus stability, anterior–posterior drawer, loaded squat movement. Quadriceps force, ligament deformations and loads, and TF contact forces were computed. During anterior drawer test the anterior cruciate ligament (ACL) was maximally loaded when the knee was extended (392 N) while the posterior cruciate ligament (PCL) was much more stressed during posterior drawer when the knee was flexed (319 N). The simulated loaded squat revealed that the anterior fibres of ACL become inactive after 60° of flexion in conjunction with PCL anterior bundle activation, while most components of the collateral ligaments exhibit limited length changes. Maximum quadriceps and TF forces achieved 3.2 and 4.2 body weight, respectively. The possibility to easily manage model parameters and the low computational cost of each simulation represent key points of the present project. The obtained results are consistent with in vivo measurements, suggesting that the model can be used to simulate complex and clinically relevant exercises.  相似文献   

20.
Many studies have been conducted to determine the biomechanical properties of the anterior cruciate ligament (ACL). The method of holding the femur-ACL-tibia complex (FATC) test specimen, the strain rate applied, the angle of knee flexion and the direction of the applied loads have an important effect on the outcome. It is felt that the tensile properties and strength of the ligament should be measured by applying the tensile force along the axis of the ligament. A versatile clamp was designed to accomplish this purpose. Fifty-seven rabbit knee specimens were tested at angles of flexion of 0 degrees, 30 degrees or 90 degrees. In addition, a comparative study of 25 pairs of rabbit legs were performed, whereby loading was either along the ligament or along the tibial axis. Cyclic hysteresis, ultimate load, energy absorbed, and stiffness were determined. The ultimate load values for the FATC decreased with increased knee flexion for those loaded along the tibial axis, while no such change was detected for FATC tested along the ligament axis. Other structural properties measured followed similar trends. It is concluded that the structural properties of the rabbit FATC change minimally with knee flexion (from 0 to 90 degrees) when loaded along the ligament axis, but decrease significantly with knee flexion when loaded along the axis of the tibia. Therefore, the data obtained in this field of study can be compared only if the direction of loading with respect to the ACL is similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号