首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
In order to provide information for the development of molecular selection markers for drought tolerance improvement, the methods of prometric analysis, quantitative real-time PCR and field evaluation were employed for the identification of the differential expression of candidate genes under drought stress in maize. At seventeen, twenty-four and forty-eight hours of polyethylene glycol-simulated drought stress at the seventh leaf stage, leaf samples were collected from two drought-tolerant inbred lines for prometric analysis by two-dimensional electrophoresis and peptide mass fingerprinting. Fifty-eight proteins out of more than 500 were found in response to drought stress. Three drought-induced spots 2506, 3507 and 4506 showed sequence similarity with cinnamyl alcohol dehydrogenase, cytochrome protein 96A8 and S-adenosyl-L-methionine synthase, respectively. The expression of two key enzymes to lignin biosynthesis was quantified by quantitative real-time PCR among three drought-tolerant and one drought-sensitive inbred lines under drought stress and well-watered control conditions. After a decrease at the beginning of drought stress, the expression of cinnamyl alcohol dehydrogenase and caffeateO-methyltransferase recovered at twenty-four hours of the drought stress in the three drought-tolerant lines, but not in the drought-sensitive lines. Leaf lignin content, anthesis-silking interval and grain weight per plant were investigated with six inbred lines of varying drought tolerance under drought stress and well-watered control. Drought tolerance coefficients of these three characters were calculated and the correlation coefficients among these drought tolerance coefficients were estimated. Significant difference in leaf lignin content was found among the inbred lines and in response to drought stress. Close correlations were observed between the drought tolerant coefficients for leaf lignin content and grain weight per plant, and between the drought tolerant coefficients for leaf lignin content and anthesis-silking interval. These results indicate that leaf lignin content is a useful index for evaluation of drought tolerance in maize. Molecular selection markers can be developed on the basis of differential expression of the candidate genes and applied to maize improvement for drought tolerance.  相似文献   

5.
In this study we reported the isolation of a mutant in which the reporter pVP14-LUC was highly expressed in Arabidopsis. The gene expression of maize VP14 is closely correlated with the endogenous ABA levels, and the Arabidopsis homolog of VP14, AtNCED1, encoding an enzyme of ABA biosynthesis, was up-regulated, and high ABA level was detected in the mutant. Map-based cloning revealed that the mutated gene is a novel allele of the AMP1 (Altered Meristem Program 1) which encodes a glutamate carboxypeptidase that plays an important role in shoot apical meristem development and phytohormone homeostasis. We found that the mutant displayed obvious drought tolerance, being with more lateral roots, high seed germination under mannitol, increased ABA accumulation, and highly induced gene expression of RD29A. Using the approaches of artificial microRNA gene silencing in transgenic plants, three AMP1 down-regulated lines were obtained. The AMP1 down-regulated plants exhibited a low rate of water loss, decreased stomatal aperture, and enhanced drought tolerance. These results provide evidence demonstrating the regulatory function of AMP1 in plant drought tolerance and stress responsive gene expression.  相似文献   

6.
7.
李娇  郭予琦  崔伟玲  许爱华  田曾元 《遗传》2014,36(7):697-706
基因表达的选择性剪接(Alternative splicing, AS)调控与植物对逆境胁迫应答密切相关, SR蛋白(Serine/ arginine-rich proteins)是其中关键的调节因子。文章对玉米B73参考基因组进行分析显示: 多数SR蛋白家族基因成员启动子区域含有3~8种与发育或胁迫相关的顺式调控元件; 27个基因成员编码碱性蛋白, 其中23个成员的编码蛋白依照其N′端的首个RRM(RNA recognition motif)结构域特征大体上可划分为5个亚组。利用双向分级聚类方法, 对三叶期干旱胁迫下玉米杂交种郑单958及其亲本郑58和昌7-2的SR蛋白基因家族的分析显示, 该基因家族的表达模式具有明显的组织表达特异性和基因型依赖性特征; 其中在干旱胁迫下地下组织以下调表达模式为主, 而地上组织中以上调表达模式为主。在重度干旱胁迫后的3个不同时段复水过程中, 地上和地下组织中SR蛋白基因家族的表达皆以下调表达模式为主。另外, 尽管不同基因成员的表达模式在干旱胁迫及其后的复水过程中存在明显差异, 但普遍存在自身选择性剪接现象。SR蛋白基因家族在玉米干旱胁迫的应答规律, 为从AS-network视角解析玉米的抗逆分子机制提供了新思路。  相似文献   

8.
9.
10.
To better understand abscisic acid (ABA) regulation of the synthesis of chloroplast proteins in maize (Zea mays L.) in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE) and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C4 plants.  相似文献   

11.
Plant C2H2-type zinc finger proteins (ZFPs) play essential roles in developmental control and stress responses. The whole complement of ZFP genes has been identified in Arabidopsis and rice, while the genome-scale identification and functional analysis of maize ZFPs is not yet reported. Hence, we performed a comprehensive analysis, including gene structure, chromosome location, duplicated event, selective pressure, phylogeny, gene ontology annotation, and expression profiling under developmental stages and abiotic stresses. Phylogenetic analyses suggested that the ZmZFP gene family can be grouped into three classes (A, B, and C). The analysis of differential gene expression in different developmental stages and stress treatments (drought, salt, and cold) was conducted based on microarray and RNA-seq data. A total of 99.05 % (209 genes) of the total ZmZFP genes (211 genes) were detected in 60 different tissues in microarray data. Under drought stress, 13 differentially expressed genes were found in leaf, of which 7 and 6 genes were up-regulated and down-regulated, respectively. For salt stress, crown root (CR), primary root (PR) and seed root (SR) each had one significantly elevated gene, while 2, 1, and 7 genes were obviously down-regulated in CR, PR and SR, respectively. Additionally, 8 and 3 genes were significantly up-regulated and down-regulated, respectively, in the cold-tolerant line ETH-DH7. This study will lay the foundation for understanding the roles of ZFPs in maize growth and stress resistance, contributing to the molecular breeding of maize for food.  相似文献   

12.
13.
14.
15.
脱水应答转录因子CBF1的克隆与转基因小麦的分子检测   总被引:1,自引:0,他引:1  
根据已发表的小麦(T.aestivum)转录因子CBF1基因序列(GenBank Accession No.AF376136),设计引物从小麦品种‘京花1号’叶片中克隆出该基因,用拟南芥RD29B基因为启动子构建含CBF1基因的逆境诱导表达载体pBAC127F(6 967 bp),以‘99-92’、‘5-98’、‘104’和‘轮选987’等冬小麦品种(系)的幼穗和幼胚为材料,基因枪转化该表达载体。经筛选与植株再生,共获得14株转基因植株及其后代株系。这14个株系经PCR分析和点杂交检测,最终确认了5-98-40、5-98-41这2个株系为转基因株系,结果表明拟南芥RD29B启动子调控下的转录因子CBF1基因已稳定整合到转基因植株中。  相似文献   

16.
17.
The N2-fixing cyanobacterium Anabaena sp. PCC7120 showed an inherent capacity for desiccation tolerance. A DNA microarray covering almost the entire genome of Anabaena was used to determine the genome-wide gene expression under desiccation. RNA was extracted from cells at intervals starting from early to late desiccation. The pattern of gene expression in DNA fragments was categorized into seven types, which include four types of up-regulated and three types of down-regulated fragments. Validation of the data was carried out by RT-PCR on selected up-regulated DNA fragments and was consistent with the changes in mRNA levels. Our conclusions regarding desiccation tolerance for Anabaena sp. PCC7120 are as follows: (i) Genes for osmoprotectant metabolisms and the K+ transporting system are up-regulated from early to mid-desiccation; (ii) genes induced by osmotic, salt, and low-temperature stress are up-regulated under desiccation; (iii) genes for heat shock proteins are up-regulated after mid-desiccation; (iv) genes for photosynthesis and the nitrogen-transporting system are down-regulated during early desiccation; and (v) genes for RNA polymerase and ribosomal protein are down-regulated between the early and the middle phase of desiccation. Profiles of gene expression are discussed in relation to desiccation acclimation.  相似文献   

18.
Drought stress at the reproductive stage causes pollen sterility and grain loss in wheat (Triticum aestivum). Drought stress induces abscisic acid (ABA) biosynthesis genes in anthers and ABA accumulation in spikes of drought-sensitive wheat varieties. In contrast, drought-tolerant wheat accumulates lower ABA levels, which correlates with lower ABA biosynthesis and higher ABA catabolic gene expression (ABA 8'-hydroxylase). Wheat TaABA8'OH1 deletion lines accumulate higher spike ABA levels and are more drought sensitive. ABA treatment of the spike mimics the effect of drought, causing high levels of sterility. ABA treatment represses the anther cell wall invertase gene TaIVR1, and drought-tolerant lines appeared to be more sensitive to the effect of ABA. Drought-induced sterility shows similarity to cold-induced sterility in rice (Oryza sativa). In cold-stressed rice, the rate of ABA accumulation was similar in cold-sensitive and cold-tolerant lines during the first 8 h of cold treatment, but in the tolerant line, ABA catabolism reduced ABA levels between 8 and 16 h of cold treatment. The ABA biosynthesis gene encoding 9-cis-epoxycarotenoid dioxygenase in anthers is mainly expressed in parenchyma cells surrounding the vascular bundle of the anther. Transgenic rice lines expressing the wheat TaABA8'OH1 gene under the control of the OsG6B tapetum-specific promoter resulted in reduced anther ABA levels under cold conditions. The transgenic lines showed that anther sink strength (OsINV4) was maintained under cold conditions and that this correlated with improved cold stress tolerance. Our data indicate that ABA and ABA 8'-hydroxylase play an important role in controlling anther ABA homeostasis and reproductive stage abiotic stress tolerance in cereals.  相似文献   

19.
20.
Based on the partial amino acid sequence, the cDNA encoding UDP-GalNAc:Fuc alpha 1----2Gal alpha 1----3GalNAc transferase, the specific primary gene product of histo-blood group A gene (A transferase), was cloned and sequenced. Poly(A)+ RNA from human stomach cancer cell line MKN45, expressing high levels of A antigen, was used for construction of a lambda gt10 cDNA library. Degenerate synthetic oligodeoxynucleotides were used for polymerase chain reactions to detect the presence of the sequence of interest in cDNA (presence test) and to identify the correct clones (identification test) after screening the library with a radiolabeled polymerase chain reaction amplified fragment. Nucleotide sequence analysis revealed a coding region of 1062 base pairs encoding a protein of 41 kDa. Hydrophobicity plot analysis shows the existence of three domains: N-terminal short stretch, transmembranous hydrophobic region, and a long C-terminal domain (a feature common to all glycosyltransferases cloned so far). Southern hybridization analysis has shown that this DNA does not represent a multigene family. No restriction fragment length polymorphism was found to correlate with ABO blood group type. Bands were detected in Northern hybridization of mRNAs from cell lines expressing A, B, AB, or H antigens. These results suggest that sequences of ABO genes are essentially very similar (with minimal differences), and the inability of the O gene to encode A or B transferases is probably due to structural differences rather than A or B transferase expression failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号