首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
The shape, distribution, and content of mitochondria in individual cells were examined during the cell cycle phases (G0/G1, S, G2 mitosis) in living human fibroblasts by static cytofluorometry and fluorescence microscopy. The morphocytochemical evaluations were performed in cell cultures submitted to double supravital fluorochrome staining with Hoechst 33342 and DiOC6 to label DNA and mitochondria, respectively. The staining modalities were based on the stability of mitochondrial labeling. The G1 to early S phases were characterized by the presence of filamentous mitochondria, except during the early postmitotic period. During late S, G2, and mitotic phases, mitochondrial mass reached its highest value and mitochondria became short and numerous. During the last stage of mitosis, mitochondria were distributed among daughter cells through a cytoplasmic bridge.  相似文献   

2.
The cytotoxic and mutagenic effect of X-irradiation was determined with Chinese hamster ovary cells arrested in the G0/G1 phase of the cell cycle through 9 days incubation in serum-free medium. In comparison with exponential phase cultures, the arrested cells showed increased cytotoxicity and mutation induction over the dose range of 50–800 rad. Exponential cultures showed a linear mutant frequency-survival relationship while the arrested cells showed a biphasic linear relationship. A post irradiation holding period of 24 h does not result in any change in the mutant frequency. The increased sensitivity of the arrested cells to the mutagenic effects of X-rays appears to be a cell-cycle phase phenomenon. Upon readdition of serum, the arrested cells re-enter the cell cycle in a synchronous manner, reaching S phase at 10–12 h. Cells irradiated at 5 h after serum addition, i.e. in G1, show a similar does response for mutant frequency, while those irradiated at 10 h or later, i.e. in late G1, S or G2, show lower mutation induction. These observations are consistent with a chromosome interchange mechanism of mutation induction by X-rays, possibly through interactions between repairing regions of the DNA. Irradiation of cells in the G0/G1 phase allow more time for such interactions in the absence of semiconservative DNA replication.  相似文献   

3.
We have allowed synchronized V79B Chinese hamster tissue culture cells to incorporate 5-bromodeoxyuridine (BUdR) during one DNA synthetic (S) period of the cell cycle and then determined chromosomal aberration yields induced by illumination of the cells with visible light during the succeeding pre- and post-DNA-synthetic (G1and G2) phases of the cell cycle. At the level used, BUdR by itself induces no aberrations. Illumination during the G1 phase following incorporation induces aberrations of the chromatid type, but none of the chromosome type. All types of chromatid aberrations are induced, including isochromatid deletions and exchange types. In contrast, when cells are illuminated during the immediately following G2 phase, large numbers of achromatic lesions and chromatic deletions are seen at the first post-illumination mitosis, but no isochromatid deletions and few exchange-type aberrations occur. When G2-illuminated cells are examined in their second mitosis, however, chromatid aberrations of all types are again seen.

These results are interpreted within the “repair” model of chromosomal aberration production by UV light presented earlier3. The model assumes that the vertebrate chromosome is mononeme, consisting of but a single DNA double helix during the prereplication G1 phase. The initial lesions induced by illumination of BUdR-containing DNA are believed to be single-chain breaks, and the observation that G1 illumination produces only chromatid-type aberrations is taken as additional evidence for the mononeme chromosome. Conversion of single-chain breaks into double chain breaks through the action of a single-strand nuclease is postulated to account for the production of chromatid deletions at the first mitosis of G2-illuminated cells. The action of this enzyme, plus a recombinational or post-replication repair mechanism, are postulated to account for the production of isochromatid deletions in G1-illuminated cells. A rapid decline in achromatic lesion frequency with increasing time between G2 illumination and fixation of the cells is considered evidence for rapid rejoining of most of the initial chain breaks.  相似文献   


4.
《FEBS letters》1994,340(3):159-162
The effects of nitric oxide produced by macrophage-like cells (Mml) on the cell cycle were investigated. Mml cells lost proliferative activity in the presence of interleukin-6 (IL-6) and a subpopulation accumulated in the G2+ M phase. This level increased in proportion to the incubation time. The DNA content of the cells was slightly lower than that of Mml cells treated with vinbrastine or demecolcine, drugs which block the cell cycle in the M phase. The peak of the early G2+M phase was reduced by treatment with NG-mono-methyl- -arginine. However, after treatment with exogenous nitric oxide or sodium nitroprusside, the G0/G1 phase increased, but the early-G2+M and the S phase decreased. The flow cytometry pattern in IL-6-treated Mml was the same as that of cytochalasin B-treated Mml. These data suggest that endogenous nitric oxide affects the microfilament system of IL-6-treated Mml cells and blocks the cell cycle in the early G2+M phase.  相似文献   

5.
The second messenger cAMP is a key regulator of growth in many cells. Previous studies showed that cAMP could reverse the growth inhibition of indoleamines in the dinoflagellate Crypthecodinium cohnii Biecheler. In the present study, we measured the level of intracellular cAMP during the cell cycle of C. cohnii . cAMP peaked during the G1 phase and decreased to a minimum during S phase. Similarly, cAMP-dependent protein kinase activities peaked at both G1 and G2+M phases of the cell cycle, decreasing to a minimum at S phase. Addition of N6, O2'-dibutyryl (Bt2)-cAMP directly stimulated the growth of C. cohnii . Flow cytometric analysis of synchronized C. cohnii cells suggested that 1 mM cAMP shortened the cell cycle, probably at the exit from mitosis. The size of Bt2-cAMP treated cells at G1 was also larger than the control cells. The present study demonstrated a regulatory role of cAMP in the cell cycle progression in dinoflagellates.  相似文献   

6.
The cell cycle distribution of bone marrow cells from the femurs of female C3H mice has been investigated by flow cytometry according to the time of the day and month of the year. Both circadian and seasonal variations were found for the different cell cycle phases as well as the total cell numbers per femur. Both the mesor, the acrophase and the amplitude of the S, G2 and (G1 + G0) phases varied significantly in some months, while in other months only insignificant rhythms were found. The relative cell cycle distribution only partly reflected variations in the total numbers of proliferating cells, since the total cell number per femur was also variable.

The total numbers of cells in DNA synthesis seem to be higher in the first part of the year, indicating increased cell proliferation during winter and spring. In this period the acrophases of DNA synthesis and G2 were in the morning, while the second half of the year showed the peak later in the day.

In general, hemopoietic cell proliferation seems to constitute a labile equilibrium with rapidly changing activities.  相似文献   

7.
Circadian rhythms of DNA synthesis in nasopharyngeal carcinoma cells   总被引:4,自引:0,他引:4  
Nasopharyngeal carcinoma (NPC) occurs frequently in southern China. The circadian rhythm of DNA synthesis of a poorly differentiated NPC human cell line (CNE2) was investigated as an experimental prerequisite for designing chrono-chemotherapy schedules for patients with this disease. Twenty-two nude mice with BALB/c background were synchronized alternatively in 12 h of light and 12 h of darkness (LD12:12) for at least 3 wk prior to the transplantation of a CNE2 tumor fragment into each flank (area of ∼2×2 mm2). Ten days later, a tumor sample (area of ∼5 mm2) was obtained at 3, 9, 15, and 21 h after light onset (HALO) alternatively from different sites in each mouse. Single-cell suspensions were prepared and stained with propidium iodide. Cellular DNA content was measured with flow cytometry. Data were analyzed by ANOVA and cosinor methods. The average proportion of tumor cells in G1, S or G2-M phase varied according to circadian time with statistical significance. The maximum occurred at 9 HALO for G1, 2 HALO for S and 21 HALO for G2-M phase cells. The approximate average distribution patterns of G1 and G2-M phases of cosine curve was 24 h. This was not the case for S-phase cells, which displayed a bimodal temporal pattern. Inter-individual variability in peak time was large, possibly due to relatively sparse sampling time. Nevertheless, no more than 6% of the time series displayed a maximum at 3 HALO for G1, 21 HALO for S and 15 HALO for G2-M. The cell cycle distribution of this human NPC cell line displayed circadian regulation following implantation into nude mice. The mechanisms involved in this rhythm and its relevance to the chrono-chemotherapy of patients deserve further investigation.  相似文献   

8.
Mouse embryonic stem cells (mESC) exhibit cell cycle properties entirely distinct from those of somatic cells. Here we investigated the cell cycle characteristics of human embryonic stem cells (hESC). HESC could be sorted into populations based on the expression level of the cell surface stem cell marker GCTM-2. Compared to mESC, a significantly higher proportion of hESC (GCTM-2+ Oct-4+ cells) resided in G1 and retained G1-phase-specific hypophosphorylated retinoblastoma protein (pRb). We showed that suppression of traverse through G1 is sufficient to promote hESC differentiation. Like mESC, hESC expressed cyclin E constitutively, were negative for D-type cyclins, and did not respond to CDK-4 inhibition. By contrast, cyclin A expression was periodic in hESC and coincided with S and G2/M phase progression. FGF-2 acted solely to sustain hESC pluripotency rather than to promote cell cycle progression or inhibit apoptosis. Differentiation increased G1-phase content, reinstated cyclin D activity, and restored the proliferative response to FGF-2. Treatment with CDK-2 inhibitor delayed hESC in G1 and S phase, resulting in accumulation of cells with hypophosphorylated pRb, GCTM-2, and Oct-4 and, interestingly, a second pRb+ GCTM-2+ subpopulation lacking Oct-4. We discuss evidence for a G1-specific, pRb-dependent restriction checkpoint in hESC closely associated with the regulation of pluripotency.  相似文献   

9.
Recent advances in defining the molecular mechanisms of cell cycle control in eukaryotes provide a basis for beter understanding the hormonal control of cell proliferation in normal and neoplastic breast epithelium. It is now clear that a number of critical steps in cell cycle progression are controlled by families of serine/threonine kinases, the cdks. These kinases are activated by interactions with various cyclin gene products which form the regulatory subunits of the kinase complexes. Several families of cyclins control cell cycle progression in G1 phase, cyclins C, D and E, or in S, G2 and mitosis, cyclins A and B. Recent studies have defined the expression and regulation of cyclin genes in normal breast epithelial cells and in breast cancer cell lines. Following growth arrest of T-47D breast cancer cells by serum deprivation restimulation with insulin results in sequential induction of cyclin genes. Cyclin D1 mRNA increases within 1 h of mitogenic stimulation and is followed by increased expression of cyclins D3 and E in G1 phase, cyclin A in late G1/early S phase and cyclin B1 in G2. Similar results were observed following epidermal growth factor stimulation of normal breast epithelial cells. Other hormones—oestrogens and progestins—and growth factors—insulin-like investigated for their effects on G1 cyclin gene expression. In all cases there was an excellent correlation between the induction of cyclin D1 mRNA and subsequent entry into S phase. Furthermore, growth inhibition by antioestrogens and concurrent G1 arrest were preceded by an acute decrease in cyclin D1 gene expression. These observations suggest a likely role for cyclin D1 in mediating many of the known hormonal effects on cell proliferation in breast epithelial cells.  相似文献   

10.
Abstract: Rat glioma mouse neuroblastoma hybrid neurotumor cells (NG108-15), synchronized by amino acid deprivation, showed a cell-cycle-dependent peak of activity of a ganglioside N-acetylgalactosaminyl transferase 14-24 h following release from the cell cycle block (S/G2 phase). Maximal expression of two typical lysosomal hydrolases, N-acetyl-β-hexosaminidase and β-galactosidase, occurred between 18 and 21 h following release (S phase), declining to G1 phase levels during the peak of N-acetylgalactosamine (GalNAc) transferase activity. In addition, glycosyltransferase activity in G2 phase cells showed an increase in apparent Vmax (suggesting the presence of more enzyme/mg of cell protein) and apparent binding affinity for uridine diphosphate N-acetylgalactosamine (UDP-GalNAc) (32 versus 14 M) when compared to transferase activity in the G1 phase. However, the opioid peptide enkephalin [D-Ala2, o-Leu5], which inhibits ganglioside GalNAc transferase activity in unsynchronized NG108-15 cultures, was much more inhibitory in whole cells 8 h after release from the cell cycle block (G1 phase) than in cells 20 h after release (G, phase), with 50% inhibition occurring at 2 ± 10-9M and 2 ± 10-7M, respectively. These results suggest that the GalNAc transferase activity is regulated in more than one way during the cell cycle, since both Vmax and Km changes are observed, and that the cyclic AMP-dependent mechanism by which opiates reduce transferase activity is receptor mediated and cell cycle dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号