首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The background nitrous oxide (N2O) emission (BNE) from agricultural soils originates from microbial nitrification and denitrification processes of soil nitrogen supplies, excluding emissions from nitrogen fertilizers applied in the current year. It is of great necessity to quantify BNE accurately at various spatial scales since BNE contributes considerably to the overall N2O emissions from croplands. Annual BNE rates across various soil/climate regions and major cropping systems of China were determined by network observations during 2002–2006 using the static chamber technique. The observations show BNE rates ranging from 0.1 to 3.67 kg N ha−1 year−1, with a mean of 1.35 kg N ha−1 year−1. Empirical functions are derived for cultivated mineral soils and describe the dependences of annual BNE rates upon soil total nitrogen (TN) content, soil organic carbon (SOC) content, bulk density (BD) and clay fraction (CF), separately or collectively. These empirical functions provide simple approaches to scale up estimated national/regional BNE inventories using available database of soil properties surveys and cropland area statistics. The national BNE of China is estimated to be 0.114–0.184 Tg (1 Tg = 1012 g) N year−1 in 2000, with the range being due to the use of different approaches. However, the available observations of annual BNE rates do not cover the entire range of soil properties on a national scale. Further work is needed to verify the empirical models for a complete range of soil types. In addition, a predictive empirical relationship between annual BNE rates and TN or SOC is established for cultivated mineral soil at the global scale. However, the empirical models could not accurately predict the BNE rates of cultivated organic soils. Further studies are required to understand the regulatory effects of soil properties on annual BNE rates of cultivated organic soils.  相似文献   

2.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

3.
The objective of this study was to evaluate the nitrogen (N) biogeochemistry of an 18–22 year old forested watershed in western Maryland. We hypothesized that this watershed should not exhibit symptoms of N saturation. This watershed was a strong source of nitrate (NO3 ) to the stream in all years, with a mean annual export of 9.5 kg N ha−1 year−1 and a range of 4.4–18.4 kg N ha−1 year−1. During the 2001 and 2002 water years, wet deposition of inorganic N was 9.0 kg N ha−1 year−1 and 6.3 kg N ha−1 year−1, respectively. Watershed N export rates in 2001 and 2002 water years were 4.2 kg N ha−1 year−1 and 5.3 kg N ha−1 year−1, respectively. During the wetter water years of 2003 and 2004, the watershed exported 15.0 kg N ha−1 year−1 and 18.4 kg N ha−1 year−1, rates that exceeded annual wet deposition of N by a factor of two (7.5 kg N ha−1 year−1 in 2003) and three (5.5 kg N ha−1 year−1 in 2004). Consistent with the high rates of N export, were high concentrations (2.1–3.3%) of N in foliage, wood (0.3%) and fine roots, low C:N ratios in the forest floor (17–24) and mineral soil (14), high percentages (83–96%) of the amount of mineralized N that was nitrified and elevated N concentrations (up to 3 mg N l−1) in soil solution. Although this watershed contained a young aggrading forest, it exhibited several symptoms of N saturation commonly observed in more mature forests.  相似文献   

4.
This study was conducted to examine the influences of soil-moisture conditions on soil nitrogen (N) dynamics, including in situ soil N mineralization, N availability, and denitrification in a pure Alnus japonica forest located in Seoul, central Korea. The soil N mineralization, N availability, and denitrification were determined using the buried bag incubation method, ion exchange resin bag method, and acetylene block method, respectively. The annual net N mineralization rate (kg N ha−1 year−1) and annual N availability (mg N bag−1) were 40.26 and 80.65 in the relatively dry site, −5.43 and 45.39 in the moist site, and 7.09 and 39.17 in the wet site, respectively. The annual net N mineralization rate and annual N availability in the dry site were significantly higher than those in the moist and wet sites, whereas there was no significant difference between the moist and wet sites. The annual mean denitrification rate (kg N ha−1 year−1) in the dry, moist, and wet sites was 2.37, 2.76, and 1.59, respectively. However, there was no significant difference among sites due to the high spatial and temporal variations. Our results indicate that soil-moisture condition influenced the in situ N mineralization and resin bag N availability in an A. japonica forest, and treatments of proper drainage for poorly drained sites would increase soil N mineralization and N availability and consequently be useful to conserve and manage the A. japonica forest.  相似文献   

5.
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.  相似文献   

6.
The spatial distribution of organic soil nitrogen (N) in alpine tundra was studied along a natural environmental gradient, covering five plant communities, at the Latnjajaure Field Station, northern Swedish Lapland. The five communities (mesic meadow, meadow snowbed, dry heath, mesic heath, and heath snowbed) are the dominant types in this region and are differentiated by soil pH. Net N mineralization, net ammonification, and net nitrification were measured using 40-day laboratory incubations based on extractable NH4+ and NO3. Nitrification enzyme activity (NEA), denitrification enzyme activity (DEA), amino acid concentrations, and microbial respiration were measured for soils from each plant community. The results show that net N mineralization rates were more than three times higher in the meadow ecosystems (mesic meadow 0.7 μg N g−1 OM day−1 and meadow snowbed 0.6 μg N g−1 OM day−1) than the heath ecosystems (dry heath 0.2 μg N g−1 OM day−1, mesic heath 0.1 μg N g−1 OM day−1 and heath snowbed 0.2 μg N g−1 OM day−1). The net N mineralization rates were negatively correlated to organic soil C/N ratio (r = −0.652, P < 0.001) and positively correlated to soil pH (r = 0.701, P < 0.001). Net nitrification, inorganic N concentrations, and NEA rates also differed between plant communities; the values for the mesic meadow were at least four times higher than the other plant communities, and the snowbeds formed an intermediate group. Moreover, the results show a different pattern of distribution for individual amino acids across the plant communities, with snowbeds tending to have the highest amino acid N concentrations. The differences between plant communities along this natural gradient also illustrate variations between the dominant mycorrhizal associations in facilitating N capture by the characteristic functional groups of plants. Responsible Editor: Bernard Nicolardot  相似文献   

7.
The deposition and cycling of carbon and nitrogen in carbonate sediments located between coral reefs on the northern and central sections of the Great Barrier Reef were examined. Rates of mass sediment accumulation ranged from 1.9 kg m−2 year−1 (inshore reefs) to 2.1–4.9 kg m−2 year−1 (between mid-shelf reefs); sedimentation was minimal off outer-shelf reefs. Rates of total organic carbon decomposition ranged from 1.7 to 11.4 mol C m−2 year−1 and total nitrogen mineralization ranged from 77 to 438 mmol N m−2 year−1, declining significantly with distance from land. Sediment organic matter was highly reactive, with mineralization efficiencies ranging from 81 to 99% for organic carbon and 64–100% for nitrogen, with little C and N burial. There was no evidence of carbonate dissolution/precipitation in short-term incubation experiments. Rates of sulfate reduction (range 0–3.4 mmol S m−2 day−1) and methane release (range 0–12.8 μmol CH4 m−2 day−1) were minor or modest pathways of carbon decomposition. Aerobic respiration, estimated by difference between total O2 consumption and the sum of the other pathways, accounted for 55–98% of total carbon mineralization. Rates of ammonification ranged from 150 to 1,725 μmol NH4 m−2 day−1, sufficient to support high rates of denitrification (range 30–2,235 μmol N2 m−2 day−1). N2O release was not detected and rates of NH4 + and NO2 + NO3 efflux were low, indicating that most mineralized N was denitrified. The percentage of total N input removed via denitrification averaged ≈75% (range 28–100%) with little regenerated N available for primary producers. Inter-reef environments are therefore significant sites of energy and nutrient flow, especially in spatially complex reef matrices such as the Great Barrier Reef.  相似文献   

8.
Changes of the soil chemical status during the recent 22–30 years at two historically degraded forest sites in southern Germany (Pfaffenwinkel, Pustert) stocked with mature Scots pine (Pinus sylvestris L.) stands were studied by repeated soil inventories conducted in 1974, 1982–1984, 1994, and 2004 on replicated control plots of fertilization experiments, allowing a statistical analysis. Additionally, the nutritional status of the stands at all plots was monitored from 1964 until 2004 by annual or bi-annual analysis of current-year foliage, and stand growth was assessed by repeated stand inventories carried out in 3- to 9-year intervals. For both sites, a statistically significant systematic decrease of the forest floor C/N ratio between 1974 and 2004 from 35.4 to 29.2 (Pfaffenwinkel) and from 36.5 to 23.0 (Pustert) was observed. The soils at both sites also showed a considerable accumulation of organic carbon (210 and 400 kg C ha−1 year−1 for Pfaffenwinkel and Pustert, respectively) and nitrogen (13 and 18 kg N ha−1 year−1). In addition, the mineral topsoil at both sites has acidified considerably, indicated by significantly decreased pH values (Pustert only; mean decrease 0.1 units per decade), base saturation, and base cation stocks. The trend of N enrichment and base cation loss in the soils is mirrored by the trends of stand nutrition at both sites, which are characterized by improved N nutrition and reduced supply with K, Mg (Pustert only), and Ca. The results confirm findings of other studies indicating a recent N eutrophication and acidification of forest soils in Central Europe and southern Scandinavia. Since soils with historic degradation due to earlier non-sustainable forest utilization are widespread in Central Europe, the results obtained on our study sites probably apply for large forested areas, suggesting a significant potential of Central European forests to sequester atmospheric carbon and nitrogen not only in stand biomass, but also in the soil.  相似文献   

9.
Alder is a typical species used for forest rehabilitation after disturbances because of its N2-fixing activities through microbes. To investigate forest dynamics of the carbon budget, we determined the aboveground and soil carbon content, carbon input by litterfall to belowground, and soil CO2 efflux over 2 years in 38-year-old alder plantations in central Korea. The estimated aboveground carbon storage and increment were 47.39 Mg C ha−1 and 2.17 Mg C ha−1 year−1. Carbon storage in the organic layer and in mineral soil in the topsoil to 30 cm depth were, respectively, 3.21 and 66.85 Mg C ha−1. Annual carbon input by leaves and total litter in the study stand were, respectively, 1.78 and 2.68 Mg C ha−1 year−1. The aboveground carbon increment at this stand was similar to the annual carbon inputs by total litterfall. The diurnal pattern of soil CO2 efflux was significantly different in May, August, and October, typically varying approximately twofold throughout the course of a day. In the seasonally observed pattern, soil CO2 efflux varied strongly with soil temperature; increasing trends were evident during the early growing season, with sustained high rates from mid May through late October. Soil CO2 efflux was related exponentially to soil temperature (R 2 = 0.85, < 0.0001), but not to soil water content. The Q 10 value for this plantation was 3.8, and annual soil respiration was estimated at 10.2 Mg C ha−1 year−1. An erratum to this article can be found at  相似文献   

10.
From 1996 to 2002, we measured litterfall, standing litter crop, and litter turnover rates in scrub, basin, fringe and riverine forests in two contrasting mangrove ecosystems: a carbonate-dominated system in the Southeastern Everglades and a terrigenous-dominated system in Laguna de Terminos (LT), Mexico. We hypothesized that litter dynamics is driven by latitude, geomorphology, hydrology, soil fertility and soil salinity stress. There were significant temporal patterns in LT with litterfall rates higher during the rainy season (2.4 g m−2 day−1) than during the dry season (1.8 g m−2 day−1). Total annual litterfall was significantly higher in the riverine forest (12.8 Mg ha−2 year−1) than in the fringe and basin forests (9.7 and 5.2 Mg ha−2 year−1, respectively). In Southeastern Everglades, total annual litterfall was also significantly higher during the rainy season than during the dry season. Spatially, the scrub forest had the lowest annual litterfall (2.5 Mg ha−2 year−1), while the fringe and basin had the highest (9.1 and 6.5 Mg ha−2 year−1, respectively). In LT, annual standing litter crop was 3.3 Mg ha−1 in the fringe and 2.2 Mg ha−1 in the basin. Litter turnover rates were significantly higher in the fringe mangrove forest (4.1 year−1) relative to the basin forests (2.2 year−1). At Southeastern Everglades there were significant differences in annual standing litter crop: 1.9, 3.3 and 4.5 Mg ha−1 at scrub, basin and fringe mangrove sites, respectively. Furthermore, turnover rates were similar at both basin and fringe mangrove types (2.1 and 2.0 year−1, respectively) but significantly higher than scrub mangrove forest (1.3 year−1). These findings suggest that litter export is important in regulating litter turnover rates in frequently flooded riverine and fringe forests, while in infrequently flooded basin forests, in situ litter decomposition controls litter turnover rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号