首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
河流沉积物氮循环主要微生物的生态特征   总被引:3,自引:0,他引:3  
微生物驱动的氮循环过程是全球生物地球化学循环的重要组成部分,由于人类活动的影响,氮循环负荷加剧,氮素的生态平衡和微生物的功能特征也相应地受到干扰。河流生态系统是陆地与海洋联系的纽带,因人类活动过量活性氮的输入导致水体富营养化,明显影响着河流的生态功能以及河口沿岸海洋生态系统的平衡。富含微生物的沉积物对氮素的转化和去除起着至关重要的作用。本文主要介绍河流沉积物氮循环主要功能微生物,包括氨氧化细菌、氨氧化古菌、亚硝酸盐氧化菌、反硝化细菌和厌氧氨氧化细菌的群落特征和生态功能,总结氮相关营养盐、溶氧和季节变化等环境因子,以及河道控制管理措施和污水处理厂扰动等条件下氮循环过程主要功能类群的生态特征和响应关系。指出还需深入全面地研究河流沉积物生态系统氮循环过程的驱动机制和微生物的贡献效率,加强城市河流沉积物微生物功能作用的研究及河道生物修复技术的开发。  相似文献   

2.
河流氮输出对流域人类活动净氮输入的响应研究综述   总被引:3,自引:0,他引:3  
人类活动引起的生态系统氮输入对水环境有着重要的潜在影响,而目前,我国流域氮污染的研究多从微观角度进行探讨,而从宏观尺度或流域角度诊断流域系统存在的问题研究尚处于起步阶段,直接导致了对流域存在的生态问题把握不清、流域污染程度和潜在污染情况含糊不明.基于此,本文综述了河流氮污染与人类活动氮素输入的响应关系及其影响因素,这对于从流域尺度诊断生态环境、摸清氮流动的过程中自然气候和人类活动扮演的角色及调节过程,并最终提出科学的管理方案具有一定的理论和实际意义.  相似文献   

3.
太湖上游不同类型过境水氮素污染状况   总被引:5,自引:0,他引:5  
利用GPS定位,在春、夏、秋、冬4个季节,对地处太湖上游宜兴地区受农田径流、农村生活污水、水产养殖和畜禽养殖污水污染的过境水体氮素污染状况进行了调查,对不同类型水体中不同形态氮浓度的季节性变化特征进行了分析,比较了不同类型水体的15N自然丰度.结果表明:不同类型过境水氮素污染严重,人为影响强烈,不同的农业生产和人类活动具有不同的污染特征;受农田径流影响的河流,水体受铵态氮污染的风险较小,受硝态氮的污染较重;农村居民区河流主要受农村生活污水影响,水体铵态氮负荷较高;畜禽养殖场附近的河流受养殖污水的影响,水体的氮素污染最为严重,尤其是铵态氮负荷最高;相比之下,养殖鱼塘水体总氮最低,主要以有机氮为主;水体氮素污染受河流季节性环境演变的影响,表现为夏季浓度最低,冬季浓度最高;农田施肥是太湖氮污染的主要来源,但在丰水期生活污水和畜禽养殖废水也会成为太湖重要的污染源.  相似文献   

4.
城镇化对我国食物消费系统氮素流动及循环利用的影响   总被引:6,自引:1,他引:6  
魏静  马林  路光  马文奇  李建辉  赵路 《生态学报》2008,28(3):1016-1025
城镇化的快速发展,在改变养分氮素流动模式的同时带来了巨大的生态环境压力和严重的污染问题.以1982年、1992年和2002年我国城镇与农村居民食物消费系统氮素流动为对象,采用物质流分析方法,探讨了城镇化对氮素流动特征及循环利用率的影响.结果表明:2002年我国城镇居民人均消费氮量为4.770kg,高于农村居民(4.314kg)10%.1982年到2002年,随着城镇化率的提高,城镇居民消费的食物氮提高了145.3%,农村减少了8.1%;城镇排入水体环境的氮增加了18.4倍,而氮素循环利用率只有13.0%,降低了40个百分点.情景分析结果表明,如果在人口增加的同时,食物结构达到国家营养纲要的标准,到2010年我国植物性氮消费量比2002年将增多142.3万t,增加了37.6%,动物性氮消费量将增多53.8万t,增加了 27.1%,城镇产生的粪尿和垃圾中氮将增加126万t.因此,伴随城镇化快速发展,在带来食物氮素需求和环境排放氮素大幅度增加的同时,也会对动植物生产带来巨大压力.  相似文献   

5.
理解农村系统的氮素流动、排放和利用过程对减少农业活动引起的潜在环境污染和促进养分资源的可持续利用具有重要意义。本研究基于集成食物链养分流动模型和氮足迹模型,提出市域尺度农村系统氮核算框架,并从种植、动物养殖和农村人居3个子系统对1998—2018年沈阳市的氮素流、循环利用和污染氮足迹开展量化比较研究。结果表明: 2018年沈阳市种植子系统、动物养殖子系统和农村人居子系统的氮素利用率分别为36.1%、59.7%和70.1%,分别比1998年增长了15.9%、9.1%和0.7%;2018年沈阳市农村系统污染氮足迹总量为123.5 Gg,比1998年增长了21.6%;1998—2014年沈阳市农村系统污染氮足迹增长较快,随后有所下降;2018年种植子系统、动物养殖子系统和人居子系统中未利用氮素分别为129.5、62.2和8.7 Gg,相当于420.4、202.1和8.7 Gg氮肥的养分资源量。总体上,农村系统氮素利用率从生产端到消费端逐渐递增,但对农村系统氮素的时空分异情况还有待进一步的研究。  相似文献   

6.
种养一体规模化、集约化是华北平原农业发展的必然趋势,而氮素是连接种植养殖的主要养分资源,以河北津龙循环农业园区为例,采用文献资料、实地调查方法分析农场水平氮素流动特征及利用率,并通过情景分析方法提出农场氮素管理措施,为实现农场水平氮养分资源高效利用、提高农场生产系统生产力和改善华北平原循环农业模式提供技术支撑和科学依据.结果表明: 在农场水平下,化肥和有机肥输入氮量674.6 kg·hm-2·a-1,占总输入氮量的88.3%,氮利用率为41.5%,种植系统氮盈余量190.7 kg·hm-2·a-1,施氮量过多是造成种植系统氮利用率低和氮素盈余量高的主要原因.养殖系统中外购饲料提供氮量占饲料总输入氮量的83.2%,粪尿排氮量为776.6 t·a-1,而还田比例仅为36.3%,氮利用率19.7%.农场水平氮总利用率为40.7%.情景分析表明,农田减少化肥施氮量50%(情景1)、增加来自农场内部玉米籽粒产量(情景2)措施,可分别使种植系统氮利用率提高34.6%和15.6%,同时农场水平氮总利用率分别提高18.7%和9.8%;另外,优化养殖系统饲料结构(情景3),可使氮总利用率提高19.1%.因此,减少化肥氮施用量、调整作物种植结构、优化饲料结构等,是提高农场氮生产力和实现环境友好双赢效果的措施和途径.  相似文献   

7.
傅银银  袁增伟  武慧君  张玲 《生态学报》2012,32(5):1578-1586
氮、磷等营养物质过量输入是造成我国湖泊富营养化问题日益严重的根源,磷作为水体富营养化过程关键限制元素,主要来自流域社会经济系统中的人类活动排放,因此,定量刻画社会经济系统内的磷流动路径是追踪水体外源磷来源和进行有效控制磷排放量的前提。以巢湖流域的安徽省含山县为例,构建社会经济系统磷流分析框架,建立磷流核算模型,并在实地调查和数据统计分析的基础上定量刻画了含山县2008年度社会经济系统磷流路径。结果表明,2008年含山县社会经济系统向水体排放的磷总量为1592t,其中农业种植子系统的排放所占比例最大(77%),该子系统的磷利用效率也较低(45%)。因此,含山县富营养化治理的重点是优化农业种植系统的磷流路径,主要措施包括合理施肥、科学排灌等。  相似文献   

8.
稻田生态系统氮素转化经济价值研究   总被引:1,自引:0,他引:1  
根据2002年上海奉贤县五四农场田间实验数据,结合相关研究结果对稻田氮素输入和输出进行研究,并运用生态经济学和环境经济学方法计算稻田生态系统氮素转化的经济价值.结果表明,当季不施氮肥的处理小区氮素收支出现赤字;而施加氮肥的处理小区氮素收支都出现盈余.不施氮处理小区单位面积稻田提供的氮素转化综合价值为正;而施加氮肥的小区其氮素转化的综合价值都为负.施氮处理小区氮素转化的负价值主要是由于过量氮肥导致田间氮素以氨挥发、渗漏和径流方式损失造成.  相似文献   

9.
黄土区降水降尘输入农田土壤中的氮素评估   总被引:14,自引:0,他引:14  
随着人类活动引起大气活性氮的急剧增加,大气氮沉降亦明显增加,由此引发的各生态系统的响应也逐渐表现出来.研究黄土区氮沉降,对农业生态系统的氮素循环与平衡提供一定的数据支持,同时为农民科学合理施肥提供依据,为研究氮沉降的环境生态效应和生物有效性提供科学支撑.用APS-2A型降水降尘自动采样器对陕西杨凌和洛川地区2006~2007年的降水降尘输入氮总量、月动态变化及各形态N的贡献率进行了监测与分析.结果显示杨凌点2006年总降雨量为507.8 mm,总N沉降通量为20.6 kg/(hm2·a),其中N湿沉降通量为19.1 kg/(hm2·a),占93%;降尘输入的N通量为1.5 kg/(hm2·a),占7%.总N沉降通量中NO-3-N为7.3 kg/(hm2·a),占36%.洛川点2006年6月~2007年5月总降雨量为579.5 mm,总N沉降通量为12.7 kg/(hm2·a),其中N湿沉降通量为11.4 kg/(hm2·a),占90%;降尘输入N的通量为1.2 kg/(hm2·a),占10% .总N沉降通量中NO-3-N为8.7kg/(hm2·a),占69%.两个点N沉降通量和氮素形态的差异在很大程度上反映了活性N主要来自人为活动,即农业生产排放的活性N.  相似文献   

10.
流域人类活动净氮输入量的估算、不确定性及影响因素   总被引:1,自引:0,他引:1  
张汪寿  李叙勇  杜新忠  郝韶楠 《生态学报》2014,34(24):7454-7464
人类活动使得大量的氮素进入流域生态系统,大量氮的盈余导致了一系列生态环境问题的出现。为了评估人类活动对流域生态系统的影响,Howarth等于1996年提出了人类活动净氮输入(NANI)的概念。综述了当前人类活动净氮输入的估算方法、不确定性及影响因素,并得到以下结论:导致NANI估算结果的不确定性原因主要有:内涵分歧、数据来源、尺度转换、估算方法的分歧。影响NANI的主要因素包括:各输入项、人口密度、土地利用组成;对于各输入项而言,化肥施用是最主要的氮素输入来源,占人类活动净氮输入总量的79.0%,其次为作物固氮,占17.6%,食品/饲料氮净输入量占-14.5%,大气沉降占15.7%;对于人口密度,NANI随着人口密度的增大而增大,当人口密度高于100人/km2,人口密度对NANI的影响趋于稳定,其他因素起主导作用。对于土地利用组成:NANI与森林面积比例成负相关,而与耕地面积比例成正相关。  相似文献   

11.
This article presents Swedish economy‐wide material flow accounts for the period 1987‐1998. It also shows possibilities for enhancing the international comparability of aggregated data on material use, by distinguishing between materials used for consumption and export purposes. The direct material input (DMI) is used as an aggregate measure to estimate the amounts of natural resources (except water and air) that are taken from nature into the economy within a year, including imports to and production within the region in question. The division of materials used for consumption and export purposes avoids double counting trade flows when DMI is applied to a group of countries. The annual DMI in Sweden for 1997‐1998, including production and imports, amounts to 24 to 27 metric tons per capita (t/c). The fossil fuel input varies only slightly over the period, from 3.2 t/c in 1991 to 3.6 t/c in 1996, a level deemed unsustainable by the Swedish Environmental Protection Agency. The input of renewable raw materials varies between 8 and 9 t/c. Ores and minerals vary between 11 and 15 t/c. The DMI puts Sweden above estimates made for Germany, the United States, and Japan and in the same range as the Netherlands. The differences in these values can mainly be explained by the relative importance of exports as compared to the size of the economy and by the variation in system boundaries for the data on natural resources. The system boundaries and data sources for natural resources need to be further defined to make the measures fully comparable. Around 5 t/c is exported, whereas the rest, around 20 t/c, is national consumption. The aggregate direct material consumption (DMC), which is the DMI minus exports, communicates the magnitude of resource use. Comparisons of the input with solid waste statistics indicate that quantity of waste (excluding mining waste) in Sweden is equal to about 10% relative of the total resource use. Material collected for recycling by the waste management system is equal to about 5% of the amount of virgin resources brought into society each year.  相似文献   

12.
Suburbanization negatively impacts aquatic systems by altering hydrology and nutrient loading. These changes interact with climate and aquatic ecosystem processes to alter nutrient flux dynamics. We used a long term data set (1993–2009) to investigate the influence of suburbanization, climate, and in-stream processes on nitrogen and phosphorus export in rivers draining the Ipswich and Parker River watersheds in northeastern MA, USA. During this timeframe population density increased in these watersheds by 14 % while precipitation varied by 46 %. We compared nutrient export patterns from the two larger watersheds with those from two nested headwater catchments collected over a nine year period (2001–2009). The headwater catchments were of contrasting, but stable, land uses that dominate the larger watersheds (suburban and forested). Despite ongoing land use change and an increase in population density in the mainstem watersheds, we did not detect an increase in dissolved inorganic nitrogen (DIN) or PO4 concentration or export over the 16-year time period. Inter-annual climate and associated runoff variability was the major control. Annual DIN and PO4 export increased with greater annual precipitation in the Ipswich and the Parker River watersheds, as well as the forested headwater catchment. In contrast, annual DIN export fluxes from the suburban headwater catchment were less affected by precipitation variability, with inter-annual export fluxes negatively correlated with mean annual temperature. The larger watershed exports diverged from headwater exports, particularly during summer, low-flow periods, suggesting retention of DIN and PO4. Our study shows suburban headwater exports respond to inter-annual variation in runoff and climate differently than forested headwater exports, but the impacts from headwater streams could be buffered by the river network. The net effect is that inter-annual variation and network buffering can mitigate higher nutrient exports from larger suburbanizing watersheds over decadal time periods.  相似文献   

13.
We evaluated nitrogen (N) export for various catchments in the San Pedro River watershed of South-central Chile (39°20′ to 40°12′S) during the dry season (February to March). We measured concentrations and export of the various N species at 16 points from the Andean headwaters to the lowland portion of the watershed: eight main nested points along the main watershed and eight secondary points on tributaries. We expected that, given a downstream increase in pastureland and decrease in native pristine forest cover, inorganic forms of N (DIN) would increase downstream, while conversely, dissolved organic nitrogen (DON) would decrease compared with concentrations in the forested headwaters. Nitrogen concentrations did not show statistically significant differences among the nested catchments. However, there were statistically significant differences in N concentrations associated with land cover among the tributaries. The results suggest that in the presence of base flow, natural landscape properties (barren land, lakes and rivers), explained most of the spatial variation in the N exports, while anthropogenic disturbance was not detectable. There was a negative relationship between DIN export and the coverage of lakes and rivers, suggesting that lakes might be acting as N traps. On the other hand, DIN, DON and total N exports were positively associated to barren land. Total nitrogen export during this 60-day dry season was less than 20 kg km−2 and the annual export was not larger than 100 kg km−2. This study documents the as yet pristine conditions of rivers in southern Chile.  相似文献   

14.
Gabriele Orlich 《Planta》1998,206(2):266-271
The aim of this study was to reveal the factors determining sucrose export and volume flow through the sieve tubes in Ricinus communis L. seedlings. The cotyledons take up sucrose from the apoplasm in vivo, and export most of it to the growing sinks, hypocotyl and root. This simple source-sink system allowed sucrose uptake and export to be studied under controlled conditions with respect to apoplasmic sucrose concentrations. From the additional knowledge of the sucrose concentrations in the mesophyll and the sieve tubes, transmembrane concentration differences were calculated. The volume flow rate along the sieve tubes could be calculated from the export rate and the sucrose concentration in the sieve tubes. While the export rate exhibited saturation kinetics, the volume flow rate decreased at high external sucrose concentrations. The export rate correlated with the sucrose uptake rate, the volume flow rate correlated with the sucrose concentration (osmotic pressure) difference across the sieve-tube plasma membrane, the driving force for transmembrane water flux. From these data it can be concluded that sucrose export and the volume flow through the sieve tubes are determined by activities of the source. Export out of Ricinus cotyledons was considerably higher than export out of green source leaves of different species. The concomitant comparatively low sucrose concentration in the sieve-tube sap of the seedlings can thus be attributed to a very high water flux into and along the sieve tubes associated with the high sucrose flux. Received: 28 November 1997 / Accepted: 4 April 1998  相似文献   

15.
刘洋  毕军  吕建树 《生态学报》2019,39(19):7067-7078
生态系统服务权衡与协同关系研究是生态系统综合管理的前提。以太湖流域江苏省为例,通过空间显示的生物物理模型计算氮、磷净化、水量供给及土壤保持4种服务指标,借助GIS空间分析表征氮、磷指标与其他指标之间关系,并利用多元Logistic模型定量识别主导驱动力。结果表明:2000到2010年间,各指标的单位面积年均值呈现不同程度的变化,氮输出指标先增加后略下降,磷输出指标逐渐增加,水量供给先下降后上升,土壤保持逐渐下降,并且服务指标的空间格局显著差异。氮、磷净化与水量供给关系在空间上表现为广泛分布的权衡及协同变化区,但与土壤保持的关系不明显,氮、磷之间主要为协同变化关系。氮净化与水量供给的正向主导驱动力为城镇建设用地和农村居民点密度,而植被覆盖度和水网密度具有显著负作用。氮、磷关系的主要影响因素为植被覆盖度,其次是耕地及林地比例,且均起到正向促进作用。主导驱动力识别有助于明确生态系统服务间关系的作用机制,为区域环境管理及生态保护规划提供科学依据。  相似文献   

16.
In a Danish lowland river system intensive measurements were made, in four 80 m reaches, of the nitrogen (N) and phosphorus (P) stored in the stream sediment. The results were used for calculation of the total retention in the river system during two summers (June to August). In addition, the mobilization of nutrients from the stream bottom in autumn 1987 was compared with the export from the watershed.During the study period (June 1987 to September 1988) the amounts of N and P stored in stream reaches were determined fortnightly using a core-sample technique. In reaches dominated by submersed macrophytes, 25–40 g N m–2 and 20–30 g P m–2 were stored during two summers, against only 10–15g N and P m–2 for sandy and gravely reaches. In riparian zones with emergent macrophytes the retention was even higher than in the submersed macrophytes. Gross retention exceeded net retention by a factor of two to three.Net retention of P in the river system during the summer of 1987 was equal to the summer export from the watershed. On an annual basis, retention in the summer constituted 20% of the P export. In contrast, retention in the summer of 1988 amounted to 60% of the total P export during the same period (38% reduction) and 22% in comparison with the annual export. The corresponding figures for N were lower, showing reductions of 16% and 12% of the export of total N in the two summer periods, and about 1% of the annual exports.In September 1987 6.4% of the total N export and 65% of the total P export from the watershed consisted of resuspended material. In 1987 the N and P retained during the summer was almost completely resuspended during storm events during September to November.  相似文献   

17.
Estimated historical and current nitrogen balances for Illinois   总被引:1,自引:0,他引:1  
The Midwest has large riverine exports of nitrogen (N), with the largest flux per unit area to the Mississippi River system coming from Iowa and Illinois. We used historic and current data to estimate N inputs, outputs, and transformations for Illinois where human activity (principally agriculture and associated landscape drainage) have had a dominant impact. Presently, approximately 800,000 Mg of N is added each year as fertilizer and another 420,000 Mg is biologically fixed, primarily by soybean (Glycine max L. Merr.). These annual inputs are greater than exports in grain, which results in surplus N throughout the landscape. Rivers within the state export approximately 50% of this surplus N, mostly as nitrate, and the remainder appears to be denitrified or temporarily incorporated into the soil organic matter pool. The magnitude of N losses for 1880, 1910, 1950, and 1990 are compared. Initial cultivation of the prairies released large quantities of N (approximately 500,000 Mg N year(-1)), and resulted in riverine N transport during the late 19th century that appears to have been on the same order of magnitude as contemporary N losses. Riverine flux was estimated to have been at a minimum in about 1950, due to diminished net mineralization and low fertilizer inputs. Residual fertilizer N from corn (Zea mays L.), biological N fixed by soybean, short-circuiting of soil water through artificial drainage, and decreased cropping-system diversity appear to be the primary sources for current N export.  相似文献   

18.
Large-scale changes in land use are occurring in many tropical regions, with significant impacts on nitrogen and phosphorus biogeochemistry. In this study we examine the relationships between land use, anthropogenic nutrient inputs, and riverine nutrient exports in a major agricultural watershed of the Pacific coast of South America, the Guayas River basin of Ecuador. We present comprehensive nutrient budgets for nitrogen (N) and phosphorous (P) for the Guayas River basin and 10 sub-watersheds. We quantify the four major anthropogenic nutrient fluxes into and out of the region: N and P fertilizer application, N fixation by leguminous crops, net import/export of N and P in agricultural products (food and feed), and atmospheric deposition. We also estimate inputs of N from biological N fixation in forests and of P from weathering sources in soils and bedrock. The sum of these sources represents net inputs of N and P to each watershed region. Overall, synthetic fertilizers are the largest input to the Guayas Basin for N (53%) and P (57%), and the largest outputs are N and P in crops. Losses of N and P in river export account for 14–38% of total N and P inputs, and there is significant accumulation of N and P, or unmeasured forms of N and P export, in most of the sub-basins. Nutrient balances are indicative of the sustainability of land use practices in a region, where a negative balance of N or P indicates nutrient depletion and subsequent loss of soil fertility, yield, and economic viability. Although the nutrient balance of the entire Guayas Basin is positive, there are negative or near zero balances in two sub-watersheds with extensive banana, coffee and permanent crops. In these basins, degradation of soil quality may be occurring due to these net nutrient losses. Our data show that nutrients are leaving the basin primarily as export crops, with riverine losses of nutrients smaller than crop exports. Nonetheless, there is a direct relationship between nutrient inputs and river outputs, suggesting that agricultural management practices in the basin may have direct impacts on N and P delivery to the highly productive Guayas estuary.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号