首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The acyl-CoA binding protein (ACBP) is essential for the fatty acid metabolism, membrane structure, membrane fusion, and ceramide synthesis. Here high resolution crystal structures of human cytosolic liver ACBP, unliganded and liganded with a physiological ligand, myristoyl-CoA are described. The binding of the acyl-CoA molecule induces only few structural differences near the binding pocket. The crystal form of the liganded ACBP, which has two ACBP molecules in the asymmetric unit, shows that in human ACBP the same acyl-CoA binding pocket is present as previously described for the bovine and Plasmodium falciparum ACBP and the mode of binding of the 3'-phosphate-AMP moiety is conserved. Unexpectedly, in one of the acyl-CoA binding pockets the acyl moiety is bound in a reversed mode as compared with the bovine and P. falciparum structures. In this binding mode, the myristoyl-CoA molecule is fully ordered and bound across the two ACBP molecules of the crystallographic asymmetric unit: the 3'-phosphate-AMP moiety is bound in the binding pocket of one ACBP molecule and the acyl chain is bound in the pocket of the other ACBP molecule. The remaining binding pocket cavities of these two ACBP molecules are filled by other ligand fragments. This novel binding mode shows that the acyl moiety can flip out of its classical binding pocket and bind elsewhere, suggesting a mechanism for the acyl-CoA transfer between ACBP and the active site of a target enzyme. This mechanism is of possible relevance for the in vivo function of ACBP.  相似文献   

2.
A structural investigation of the sodium dodecyl sulfate (SDS)-induced fibrillation of α-synuclein (αSN), a 140-amino-acid protein implicated in Parkinson's disease, has been performed. Spectroscopic analysis has been combined with isothermal titration calorimetry, small-angle X-ray scattering, and transmission electron microscopy to elucidate a fibrillation pathway that is remarkably different from the fibrillation pathway in the absence of SDS. Fibrillation occurs most extensively and most rapidly (starting within 45 min) under conditions where 12 SDS molecules are bound per αSN molecule, which is also the range where SDS binding is associated with the highest enthalpy. Fibrillation is only reduced in proportion to the fraction of SDS below 25 mol% SDS in mixed surfactant mixtures with nonionic surfactants and is inhibited by formation of bulk micelles and induction of α-helical structure. In this fibrillogenic complex, 4 αSN molecules initially associate with 40-50 SDS molecules to form a shared micelle that gradually grows in size. The complex initially exhibits a mixture of random coil and α-helix, but incubation results in a structural conversion into β-sheet structure and concomitant formation of thioflavin-T-binding fibrils over a period of several hours. Based on small-angle X-ray scattering, the aggregates elongate as a beads-on-a-string structure in which individual units of ellipsoidal SDS-αSN are bridged by strings of the protein, so that aggregates nucleate around the surface of protein-stabilized micelles. Thus, fibrillation in this case occurs by a process of continuous accretion rather than by the rate-limiting accumulation of a distinct nucleus. The morphology of the SDS-induced fibrils does not exhibit the classical rod-like structures formed by αSN when aggregated by agitation in the absence of SDS. The SDS-induced fibrils have a flexible worm-like appearance, which can be converted into classical straight fibrils by continuous agitation. SDS-induced fibrillation represents an alternative and highly reproducible mechanism for fibrillation where protein association is driven by the formation of shared micelles, which subsequently allows the formation of β-sheet structures that presumably link individual micelles. This illustrates that protein fibrillation may occur by remarkably different mechanisms, testifying to the versatility of this process.  相似文献   

3.
Riboswitches are complex folded RNA domains found in noncoding regions of mRNA that regulate gene expression upon small molecule binding. Recently, Breaker and coworkers reported a tandem aptamer riboswitch (VCI-II) that binds glycine cooperatively. Here, we use hydroxyl radical footprinting and small-angle X-ray scattering (SAXS) to study the conformations of this tandem aptamer as a function of Mg(2+) and glycine concentration. We fit a simple three-state thermodynamic model that describes the energetic coupling between magnesium-induced folding and glycine binding. Furthermore, we characterize the structural conformations of each of the three states: In low salt with no magnesium present, the VCI-II construct has an extended overall conformation, presumably representing unfolded structures. Addition of millimolar concentrations of Mg(2+) in the absence of glycine leads to a significant compaction and partial folding as judged by hydroxyl radical protections. In the presence of millimolar Mg(2+) concentrations, the tandem aptamer binds glycine cooperatively. The glycine binding transition involves a further compaction, additional tertiary packing interactions and further uptake of magnesium ions relative to the state in high Mg(2+) but no glycine. Employing density reconstruction algorithms, we obtain low resolution 3-D structures for all three states from the SAXS measurements. These data provide a first glimpse into the structural conformations of the VCI-II aptamer, establish rigorous constraints for further modeling, and provide a framework for future mechanistic studies.  相似文献   

4.
A series of structural intermediates in the putative pathway from the cellular prion protein PrP(C) to the pathogenic form PrP(Sc) was established by systematic variation of low concentrations (<0.1%) of the detergent sodium dodecyl sulfate (SDS) or by the interaction with the bacterial chaperonin GroEL. Most extended studies were carried out with recombinant PrP (90-231) corresponding to the amino acid sequence of hamster prions PrP 27-30. Similar results were obtained with full-length recombinant PrP, hamster PrP 27-30 and PrP(C) isolated from transgenic, non-infected CHO cells. Varying the incubation conditions, i.e. the concentration of SDS, the GroEL and GroEL/ES, but always at neutral pH and room temperature, different conformations could be established. The conformations were characterized with respect to secondary structure as determined by CD spectroscopy and to molecular mass, as determined by fluorescence correlation spectroscopy and analytical ultracentrifugation: alpha-helical monomers, soluble alpha-helical dimers, soluble but beta-structured oligomers of a minimal size of 12-14 PrP molecules, and insoluble multimers were observed. A high activation barrier was found between the alpha-helical dimers and beta-structured oligomers. The numbers of SDS-molecules bound to PrP in different conformations were determined: Partially denatured, alpha-helical monomers bind 31 SDS molecules per PrP molecule, alpha-helical dimers 21, beta-structured oligomers 19-20, and beta-structured multimers show very strong binding of five SDS molecules per PrP molecule. Binding of only five molecules of SDS per molecule of PrP leads to fast formation of beta-structures followed by irreversible aggregation. It is discussed that strongest binding of SDS has an effect identical with or similar to the interaction with GroEL thereby inducing identical or very similar transitions. The interaction with GroEL/ES stabilizes the soluble, alpha-helical conformation. The structure and their stabilities and particularly the induction of transitions by interaction of hydrophobic sites of PrP are discussed in respect to their biological relevance.  相似文献   

5.
Tom70 is a mitochondrial protein import receptor composed of 11 tetratricopeptide repeats (TPRs). The first three TPRs form an N-terminal domain that recruits heat shock protein family chaperones, while the eight C-terminal TPRs form a domain that receives, from the bound chaperone, mitochondrial precursor proteins destined for import. Analytical ultracentrifugation and solution small-angle X-ray scattering (SAXS) analysis characterized Tom70 as an elongated monomer. A model for the Tom70 monomer was proposed based on the alternate interpretation of the domain pairings observed in the crystal structure of the Tom70 dimer and refined against the SAXS data. In this “open” model of the Tom70 monomer, the chaperone- and precursor-binding sites are exposed and lay side by side on one face of the molecule. Fluorescence anisotropy measurements indicated that monomeric Tom70 can bind both chaperone and precursor peptides and that chaperone peptide binding does not alter the affinity of Tom70 for the precursor peptide. SAXS was unable to detect any shape change in Tom70 upon chaperone binding. However, molecular modeling indicated that chaperone binding is incompatible with Tom70 dimer formation. It is proposed that the Tom70 monomer is the functional unit mediating initial chaperone docking and precursor recognition.  相似文献   

6.
The denaturation of dimeric cytoplasmic MM-creatine kinase by sodium dodecyl sulfate (SDS) has been investigated using activity measurements, far-ultraviolet circular dichroism, SEC-HPLC, electric birefringence, intrinsic probes (cysteine and tryptophan residues), and an extrinsic fluorescent probe (ANS). Our results show that inactivation is the first detectable event; the inactivation curve midpoint is located around 0.9 mM SDS. The second event is dissociation and it occurs in parallel to tertiary and secondary perturbations, as demonstrated by the coincidence (near 1.3 mM) of the midpoints of the transition curves monitoring dissociation and structural changes. At high total SDS concentration (concentration higher than 2.5 mM), the monomer had bound 170 mol of SDS per mol of protein. In these conditions, electric birefringence experiments suggest that the SDS-CK complex may be described as a prolate ellipsoid with an axial ratio of 1.27 (14 nm×11 nm). These results are compatible with recent models of SDS-protein complexes: the protein decorated micelle structure or the necklace structure.  相似文献   

7.
The effect of GuHCl and of NaCl on the structural properties of the hemocyanin (Hc) from Carcinus aestuarii has been studied by small angle x-ray scattering (SAXS) using synchrotron radiation. SAXS data collected as a function of perturbant concentration have been used to analyze conformational states of hexameric holo and apoHc as well as the holo and apoforms of the monomeric subunit CaeSS2. In the case of the holoprotein in GuHCl, two concentration domains were identified: at lower concentration, the perturbant induces aggregation of Hc molecules, whereas at higher concentration the aggregates dissociate with concomitant denaturation of the protein. In contrast, with apoHc the denaturation occurs at rather low GuHCl, pointing to an important effect of the active site bound copper for the stabilization of Hc tertiary structure. The effects of NaCl are similar to those of GuHCl as far as CaeSS2 is concerned, namely oligomerization precedes denaturation, whereas in the case of the hexameric form no aggregation occurs. To improve data analysis, on the basis of the current models for Hc monomers and oligomers, the fraction of each aggregation state and/or unfolded protein has been determined by fitting experimental SAXS curves with form factors calculated from Monte Carlo methods. In addition, a global analysis has been carried out on the basis of a thermodynamic model involving an equilibrium between a monomer in a nativelike and denatured form as well as a class of equilibria among the monomer and other aggregates.  相似文献   

8.
When sodium dodecyl sulfate (SDS) is added to a high-performance gel chromatographic column equilibrated with a buffer solution containing SDS at a level above the critical micelle concentration, the surplus SDS migrates as micelles giving a sharp peak. The presence of an unfolded protein in the sample solution gives a polypeptide peak in advance of the SDS micelle peak. As the result of SDS binding to the polypeptide, the SDS micelle peak is attenuated in comparison to that in the absence of protein. Thus the amount of SDS bound to the polypeptide can be determined accurately and simply from the decrease in the area of the SDS micelle peak. This approach is particularly useful for precise determination of bound SDS, which is pertinent to understanding the state of the protein polypeptide-SDS complex under the conditions of SDS-polyacrylamide gel electrophoresis.  相似文献   

9.
The DNA gyrase negative supercoiling mechanism involves the assembly of a large gyrase/DNA complex and conformational rearrangements coupled to ATP hydrolysis. To establish the complex arrangement that directs the reaction towards negative supercoiling, bacterial gyrase complexes bound to 137- or 217-bp DNA fragments representing the starting conformational state of the catalytic cycle were characterized by sedimentation velocity and small-angle X-ray scattering (SAXS) experiments. The experiments revealed elongated complexes with hydrodynamic radii of 70–80 Å. Molecular envelopes calculated from these SAXS data show 2-fold symmetric molecules with the C-terminal domain (CTD) of the A subunit and the ATPase domain of the B subunit at opposite ends of the complexes. The proposed gyrase model, with the DNA binding along the sides of the molecule and wrapping around the CTDs located near the exit gate of the protein, adds new information on the mechanism of DNA negative supercoiling.  相似文献   

10.
11.
Measurements of the stability as a function of pH for the acyl-coenzyme A binding protein (ACBP) has shown a significant difference in the pH transition midpoint measured by NMR spectroscopy at pH 3.12 and the transition midpoint measured at pH 2.92 and 2.97 by circular dichroism and by fluorescence spectroscopy, respectively. A similar behavior has not been observed in other proteins. It is suggested that these differences arise because the population of the unfolded molecules still contains significant amounts of native like secondary and tertiary structure. NMR spectroscopy measures the concentration of the two components of the folding unfolding equilibrium individually, whereas circular dichroism and fluorescence measure the concentration of the conformations of the light-absorbing chromophores present in both the folded and the unfolded molecules. In the narrow pH range, nascent structure can be detected as the average amount of secondary structure per unfolded molecule and hydrophobic interactions in the population of unfolded molecules. These structures are not observable immediately by NMR spectroscopy; however, a chemical shift analysis of the peptide backbone (13)C chemical shift indicates strongly the existence of short-lived and transient helical structures at pH 2.3. Magnetization transfer studies have been applied to study the equilibrium between folded and unfolded ACBP near the pH transition point measured by NMR. This study has shown that there are two categories of subpopulations in the population of unfolded ACBP. One for which magnetization can be transferred to the folded form during the folding process, and one for which transfer is not observed. The molecules of the latter population of unfolded protein apparently, do not fold within the time-frame of the magnetization transfer experiment. This result suggests the existence of a subpopulation of the acid-unfolded protein molecules with a high propensity for folding. It is suggested that in this subpopulation, a particular set of native like interactions in the peptide backbone and between side-chains in the peptide chain have to be formed.  相似文献   

12.
Acyl-CoA binding protein (ACBP) is a housekeeping protein and is an essential protein in human cell lines and in Trypanosoma brucei. The ACBP of Moniliophthora perniciosa is composed of 104 amino acids and is possibly a non-classic isoform exclusively from Basidiomycetes. The M. perniciosa acbp gene was cloned, and the protein was expressed and purified. Acyl-CoA ester binding was analyzed by isoelectric focusing, native gel electrophoresis and isothermal titration calorimetry. Our results suggest an increasing affinity of ACBP for longer acyl-CoA esters, such as myristoyl-CoA to arachidoyl-CoA, and best fit modeling indicates two binding sites. ACBP undergoes a shift from a monomeric to a dimeric state, as shown by dynamic light scattering, fluorescence anisotropy and native gel electrophoresis in the absence and presence of the ligand. The protein's structure was determined at 1.6 Å resolution and revealed a new topology for ACBP, containing five α-helices instead of four. α-helices 1, 2, 3 and 4 adopted a bundled arrangement that is unique from the previously determined four-helix folds of ACBP, while α-helices 1, 2, 4 and 5 formed a classical four-helix bundle. A MES molecule was found in the CoA binding site, suggesting that the CoA site could be a target for small compound screening.  相似文献   

13.
The histone-like HU (heat unstable) protein plays a key role in the organization and regulation of the Escherichia coli genome. The nonspecific nature of HU binding to DNA complicates analysis of the mechanism by which the protein contributes to the looping of DNA. Conventional models of the looping of HU-bound duplexes attribute the changes in biophysical properties of DNA brought about by the random binding of protein to changes in the effective parameters of an ideal helical wormlike chain. Here, we introduce a novel Monte Carlo approach to study the effects of nonspecific HU binding on the configurational properties of DNA directly. We randomly decorated segments of an ideal double-helical DNA with HU molecules that induce the bends and other structural distortions of the double helix find in currently available X-ray structures. We find that the presence of HU at levels approximating those found in the cell reduces the persistence length by roughly threefold compared with that of naked DNA. The binding of protein has particularly striking effects on the cyclization properties of short duplexes, altering the dependence of ring closure on chain length in a way that cannot be mimicked by a simple wormlike model and accumulating at higher-than-expected levels on successfully closed chains. Moreover, the uptake of protein on small minicircles depends on chain length, taking advantage of the HU-induced deformations of DNA structure to facilitate ligation. Circular duplexes with bound HU show much greater propensity than protein-free DNA to exist as negatively supercoiled topoisomers, suggesting a potential role of HU in organizing the bacterial nucleoid. The local bending and undertwisting of DNA by HU, in combination with the number of bound proteins, provide a structural rationale for the condensation of DNA and the observed expression levels of reporter genes in vivo.  相似文献   

14.
A fusion protein made from maltose binding protein (pmal) and human metallothionein (MT) was expressed using E. coli. The purified recombinant protein (pmal-MT) was immobilized on Chitopearl resin, and characteristics of pmal-MT for metal binding were evaluated. As expected from the tertiary structure of metallothionein, the pmal-MT ligand adsorbed 12.1 cadmium molecules per one molecule of the ligand at pH 5.2. The pmal-MT ligand also bound 26.6 gallium molecules per one molecule of the ligand at pH 6.5. Neither cadmium ion nor gallium ion bound to a control protein bovine serum albumin (BSA). Adsorption isotherms for both ions were correlated by Langmuir-type equations. Two types of binding sites have been elucidated on the basis of HSAB (hard and soft acid and base) theory. It was suggested that gallium ion specifically binds to amino acid residues containing oxygen and nitrogen atoms, while cadmium ion binds to specific binding sites formed by multiple cysteine residues. The pmal-MT ligand bound these metals in the concentration range of 0.2-1.0 mM, and the bound metal ions could be eluted under relatively mild conditions (pH 2.0). The pmal-MT Chitopearl resin was stable and could be used repeatedly without loss of binding activity. Thus, this new ligand would be useful for recovery of toxic heavy metals and/or valuable metal ions from various aqueous solutions.  相似文献   

15.
Earlier neutron small-angle scattering experiments had revealed the low resolution structure of the complex between sodium dodecyl sulfate (SDS) and the single polypeptide (452 amino acid residues) of a water-soluble enzyme. The saturated complex consists of three globular micelles which are connected by short flexible polypeptide segments. New experiments, described here, were performed at subsaturating concentrations of free SDS in equilibrium with the complex. The data show a decrease in stoichiometry from one bound dodecyl sulfate (DS) anion per two amino acid residues near the critical micelle concentration (CMC) to one per four residues at half the CMC. At 0.3 CMC, a two-micelle complex is formed by the recombination of the small amino-terminal micelle with the middle one; and the center-to-center distance between the carboxyl-terminal micelle and the middle one decreases from 7.5 to 6.2 nm. These structural data allow us to better understand earlier results obtained with high-performance agarose gel chromatography of the same SDS-protein complexes.  相似文献   

16.
X-rays interact with biological matter and cause damage. Proteins and other macromolecules are damaged primarily by ionizing X-ray photons and secondarily by reactive radiolytic chemical species. In particular, protein molecules are damaged during X-ray diffraction experiments with protein crystals, which is, in many cases, a serious hindrance to structure solution. The local X-ray-induced structural changes of the protein molecule have been studied using a number of model systems. However, it is still not well understood whether these local chemical changes lead to global structural changes in protein and what the mechanism is.We present experimental evidence at atomic resolution indicating the movement of large parts of the protein globule together with bound water molecules in the early stages of radiation damage to the protein crystal. The data were obtained from a crystal cryocooled to ~ 100 K and diffracting to 1 ?. The movement of the protein structural elements occurs simultaneously with the decarboxylation of several glutamate and aspartate residues that mediate contacts between moving protein structural elements and with the rearrangement of the water network. The analysis of the anisotropy of atomic displacement parameters reveals that the observed atomic movements occur at different rates in different unit cells of the crystal. Thus, the examination of the cooperative atomic movement enables us to better understand how radiation-induced local chemical and structural changes of the protein molecule eventually lead to disorder in protein crystals.  相似文献   

17.
The structural mechanism by which nonstructural protein 3 (NS3) from the hepatitis C virus (HCV) translocates along RNA is currently unknown. HCV NS3 is an ATP-dependent motor protein essential for viral replication and a member of the superfamily 2 helicases. Crystallographic analysis using a labeled RNA oligonucleotide allowed us to unambiguously track the positional changes of RNA bound to full-length HCV NS3 during two discrete steps of the ATP hydrolytic cycle. The crystal structures of HCV NS3, NS3 bound to bromine-labeled RNA, and a tertiary complex of NS3 bound to labeled RNA and a non-hydrolyzable ATP analog provide a direct view of how large domain movements resulting from ATP binding and hydrolysis allow the enzyme to translocate along the phosphodiester backbone. While directional translocation of HCV NS3 by a single base pair per ATP hydrolyzed is observed, the 3′ end of the RNA does not shift register with respect to a conserved tryptophan residue, supporting a “spring-loading” mechanism that leads to larger steps by the enzyme as it moves along a nucleic acid substrate.  相似文献   

18.
The protein alpha-Synuclein (aS) is a synaptic vesicle-associated regulator of synaptic strength and dopamine homeostasis with a pathological role in Parkinson's disease. The normal function of aS depends on a membrane-associated conformation that is adopted upon binding to negatively charged lipid surfaces. Previously we found that the membrane-binding domain of aS is helical and suggested that it may exhibit an unusual structural periodicity. Here we present a study of the periodicity, topology, and dynamics of detergent micelle-bound aS using paramagnetic spin labels embedded in the micelle or attached to the protein. We show that the helical region of aS completes three full turns every 11 residues, demonstrating the proposed 11/3 periodicity. We also find that the membrane-binding domain is partially buried in the micelle surface and bends toward the hydrophobic interior, but does not traverse the micelle. Deeper submersion of certain regions within the micelle, including the unique lysine-free sixth 11-residue repeat, is observed and may be functionally important. There are no long-range tertiary contacts within this domain, indicating a highly extended configuration. The backbone dynamics of the micelle-bound region are relatively uniform with a slight decrease in flexibility observed toward the C-terminal end. These results clarify the topological features of aS bound to membrane-mimicking detergent micelles, with implications for aS function and pathology.  相似文献   

19.
In this contribution, we have studied the dynamics of electron transfer (ET) of a flavoprotein to the bound cofactor, an important metabolic process, in a model molecular/macromolecular crowding environments. Vitamin B2 (riboflavin, Rf) and riboflavin binding protein (RBP) are used as model cofactor and flavoprotein, respectively. An anionic surfactant sodium dodecyl sulfate (SDS) is considered to be model crowding agent. A systematic study on the ET dynamics in various SDS concentration, ranging from below critical micellar concentration (CMC), where the surfactants remain as monomeric form to above CMC, where the surfactants self-assemble to form nanoscopic micelle, explores the dynamics of ET in the model molecular and macromolecular crowding environments. With energy selective excitation in picosecond-resolved studies, we have followed temporal quenching of the tryptophan residue of the protein and Rf in the RBP–Rf complex in various degrees of molecular/macromolecular crowding. The structural integrity of the protein (secondary and tertiary structures) and the vitamin binding capacity of RBP have been investigated using various techniques including UV–Vis, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) studies in the crowding environments. Our finding suggests that the effect of molecular/macromolecular crowding could have major implication in the intra-protein ET dynamics in cellular environments.  相似文献   

20.
The binding of hexadecyltrimethylammonium chloride (HTAC) and sodium dodecyl sulfate (SDS) to cytochrome c was determined by potentiometric titration and the corresponding changes in protein conformation by circular dichroism (CD). The binding isotherms were biphasic; about 20 surfactant cations or anions were bound to cytochrome c in the first phase. Another 30 or so HTA+ ions were bound in the second phase, which was below the critical micelle concentration of the surfactant, but the binding of dodecyl sulfate ions in the second phase increased sharply near the critical micelle concentration. The binding of both surfactants was highly cooperative and was endothermic; the data in the first phase fitted the Hill plot. The corresponding change in the secondary structure of cytochrome c was small; the CD spectra in the ultraviolet region showed a moderate increase in the helicity in HTAC solution and some changes in conformation in SDS solution. However, the CD spectra for the Soret band indicated a marked change in the local conformation around the heme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号