首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
一龄内扬子鳄的饲养和管理技术的改进   总被引:4,自引:1,他引:3  
对扬子鳄幼鳄的饲养与管理技术进行了改进,经过1996-1998年计5000多条幼鳄的饲养实践,总结出新的饲养与管理技术,对提高幼鳄的成活具有极为显著的效果,8月龄成活率可达95%左右,14月龄成活率90%左右。  相似文献   

2.
以成都动物园人工饲养的7条湾鳄Crocodylus porosus Schneider为对象,介绍了在人工饲养条件下经常会用到的抓捕、采血、性别鉴定等技术操作及其意义,为湾鳄的人工饲养管理提供一定的实践依据.  相似文献   

3.
扬子鳄是一种人工饲养繁殖成功的濒危野生动物。1992年获CITES成员大会批准,允许子二代鳄的商业性开发利用。作者分析了我国扬鳄保护、养殖现状和扬子鳄群体的跗特征,认为一方面扬子鳄野生资源仍受到威胁,另一方面随着饲养各群数量的增加,养殖费用不断增长,扬子鳄在潜在经济价值也示能实现。鉴于此,提出加强动用现代生物技术对扬鳄保护遗传学和开发利用研究的建议。  相似文献   

4.
影响扬子鳄产蛋量的因素分析   总被引:1,自引:1,他引:0  
1997~2006年对安徽省扬子鳄繁殖研究中心内的扬子鳄亲本、F1代和F2代繁殖鳄群体在冬眠环境条件、采食量、年龄等方面进行观察,对各代繁殖鳄的年产蛋数量进行统计。用SPSS11.0软件中的one-way ANOVA方法分析比较人工饲养鳄各代群体之间及人工饲养鳄与野生鳄群体之间年产蛋数量的变化关系,结果显示区域内扬子鳄所建造的洞穴数量和其所建造洞穴的质量决定着圈养鳄的冬眠质量,鳄的冬眠质量影响到鳄体内的性腺系统正常发育,最终影响扬子鳄次年能否参加产蛋;年采食量影响鳄的产蛋数量。通过第1、2、5年间产蛋量F值检验(F值=4.866,P=0.009<0.05),得出圈养条件下扬子鳄的产蛋数量是随着产龄的增加而呈增长的趋势。  相似文献   

5.
通过对宣城扬子鳄繁殖研究中心三代繁殖鳄1982—2003年繁殖力有关参数的分析,结果表明近三年来繁殖研究中心扬子鳄产卵量明显减少;亲代受精率为(83.80±2.37)%、孵化率为(89.53±0.86)%;发现F1受精率为(79.38±2.74)%、孵化率为(83.78±1.95)%;F2代个体受精率为(68.7±1.84)%、孵化率为(88.16±1.68)%;通过单因素方差分析F(受精率)=4.33(P<0.05)、F(孵化率)=4.56(P<0.05)差异显著。分析影响扬子鳄繁殖的因素发现:产卵量明显减少可能与亲代鳄逐渐退出繁殖期、F1代鳄整体产卵能力有下降趋势、F2代鳄没有大规模进入繁殖期有关;分析历史资料发现扬子鳄产卵窝数与4月份的温度相关性高(R=0.979,P<0.01);作者认为F1、F2代个体与亲代之间的受精率、孵化率有显著差异,近交衰退、遗传多样性的丧失有密切关系。利用时间序列分析建立理想状态下饲养扬子鳄种群数量估计模型,预测10年内扬子鳄饲养将可能达到19000尾;根据该种群增长模式及种群年龄结构特点,应扩大饲养规模,特别是育成鳄饲养池及幼鳄饲养池的建设。  相似文献   

6.
该文测序了湾鳄的线粒体基因组全序列,全长为16,917bp。湾鳄mtDNA结构与其他脊椎动物相似,由22个tRNA,2个rRNA和13个蛋白质编码基因及1个非编码的控制区(D-loop)所组成。除NADH6和tRNAGln、tRNAAla、tRNAAsn、tRNACys、tRNATyr、tRNASer(UCN)、tRNAGlu、tRNAPro在L-链上编码之外,其余基因均在H-链编码。基因排列顺序与已测序的鳄类一致,这显示了鳄类线粒体基因排列顺序上的保守性。但鳄类线粒体基因排列顺序与脊椎动物的典型排列方式相比,有较大的差异,尤其是tRNAPhe基因的重排、tRNASer-tRNAHis-tRNALeu基因族的排列方式等。湾鳄mtDNA和已测序的鳄类一样,缺失轻链复制起始点(OLR)。基于17种鳄mtDNA控制区保守区,采用PAUP4.0最大简约法(Maximumparsimony,MP)构建MP树,邻接法(Neighbor-joiningmethod,NJ)构建NJ树,结果显示:食鱼鳄(Gavialisgangeticus)和假食鱼鳄(Tomistomaschlegelii)聚为一支后再与鳄科(Crocodylidae)的其他物种形成姐妹群,这与基于食鱼鳄和假食鱼鳄的线粒体全序列的分析结果一致,支持将食鱼鳄并入鳄科的观点。结果还支持非洲窄吻鳄(Crocodyluscataphractus)与鳄属(Crocodylus)构成姐妹群,可以单独划分为属的观点。  相似文献   

7.
扬子鳄的人工养殖   总被引:2,自引:2,他引:0  
本文仅介绍我国特有的珍稀动物扬子鳄(Alligator sinensis)亲本的驯养技术及其探索过程。1 第一阶段(1980—1983) 鉴于1979年底建立的圆形饲养池(约500平方米)。在二年内先后投放的近70条鳄均未能繁殖,因此自1982年春建立了一个总面积约13 000平方米的繁殖饲养区。同年6月从170条成年鳄中挑选雄鳄12条、雌鳄88条放入繁殖区。经过当年的适应  相似文献   

8.
扬子鳄(Alligator sinensis)是我国特有的古老而珍稀的爬行动物,现阶段野生扬子鳄的分布区域进一步萎缩,成为彼此孤立的点状,残存栖息地的生态环境趋于恶化,野生鳄数量估计为120~150条,老年化程度高。扬子鳄的保护管理依据现实状况及时加以调整,加大了野外保护力度,逐步改善野生鳄的栖息生境,实施野外放归工程,初步遏制了野生鳄数量迅速下滑的局面。人工饲养种群数量已逾10 000条,当前人工饲养繁殖的重点是管理好有限的遗传多样性资源。扬子鳄的研究主要涉及形态学、解剖学、组织胚胎学、生态学、生理生化、细胞及分子生物学,人工饲养繁殖技术等方面。营养生理和保护遗传学的应用研究有待加强。  相似文献   

9.
扬子鳄是目前我国现存的唯一特产鳄种,被列为国家Ⅰ级重点保护野生动物,世界自然保护联盟(IUCN)更是将扬子鳄列为全球23种鳄鱼中最濒危的鳄类。扬子鳄有着顽强的生命力,曾与恐龙共同生活过一亿多年并延续至今便是最好的明证。但是,自20世纪中叶以来,随着人类活动影响的逐渐加剧,其种群数量和分布地域呈急速锐减的态势。扬子鳄.这一珍贵的孑遗物种徘徊在了灭绝的边缘。1980年,在精心饲养条件下,扬子鳄产下了中国第一批幼鳄,成为人工饲养条件下繁殖成功的先例。1982年安徽省扬子鳄  相似文献   

10.
扬子鳄(Alligator sinensis)是我国特有的古老而珍稀的爬行动物,现阶段野生扬子鳄的分布区域进一步萎缩,成为彼此孤立的点状,残存栖息地的生态环境趋于恶化,野生鳄数量估计为120 ~150条,老年化程度高.扬子鳄的保护管理依据现实状况及时加以调整,加大了野外保护力度,逐步改善野生鳄的栖息生境,实施野外放归工程,初步遏制了野生鳄数量迅速下滑的局面.人工饲养种群数量已逾10 000条,当前人工饲养繁殖的重点是管理好有限的遗传多样性资源.扬子鳄的研究主要涉及形态学、解剖学、组织胚胎学、生态学、生理生化、细胞及分子生物学,人工饲养繁殖技术等方面.营养生理和保护遗传学的应用研究有待加强.  相似文献   

11.
The size of embryos at various stages of development was determined in three species of crocodilian ( Alligator mississippiensis, Crocodylus johnstoni and C. porosus). Various morphometric measurements were taken of embryos throughout development and were described for each stage of development. Increase in size from stage to stage was faster in A. mississippiensis than in C. porosus and C. johnstoni. Hatchlings of A. mississippiensis were large in length but light in mass compared with the hatchlings of C. johnstoni and C. porosus which were heavier per unit length. These morphometric parameters can be used to determine the stage of embryonic development by size. The use of principle component analysis improves this technique further by dampening any anomalous data points.
The rate of embryonic growth in A. mississippiensis appeared to be under greater genetic control than in the two species of Crocodylus. The evolutionary advantages of this phenomenon probably relate to the biology of A. mississippiensis. Due to the northerly range of this species it is advantageous for alligators to hatch as soon as possible, as large as possible, to maximize the period prior to winter hibernation and reduce predation. Tropical crocodiles have fewer selection pressures for rapid development and have slower rates of embryonic growth. Genetic aspects of crocodilian embryonic development have been largely ignored but may help explain some aspects of crocodilian growth under farming conditions.  相似文献   

12.
Both morphological and paleontological characteristics support the hypothesis of a monophyletic origin of crocodilian and avian groups. However, while the erythrocytes of all birds studied to date are reported to contain high levels of inositol pentakisphosphate (InsP(5)), which acts as an allosteric effector of hemoglobin, this molecule has not been reported in crocodilian erythrocytes. In this study we compare the highly phosphorylated inositols in crocodilian and avian erythrocytes using a particularly sensitive analytical procedure. Our aim was to obtain new data which might provide further evidence for the monophyletic origin, or otherwise, of crocodiles and birds. We studied three avian and three crocodilian species. The erythrocytes of the three bird species contained low levels of inositol-3,4,5,6-tetrakisphosphate and inositol-1,3,4,6-tetrakisphosphate, thought to be precursors of Ins(1,3,4,5,6)P(5). The crocodilian erythrocytes studied contained Ins(1,3,4,5,6)P(5) and InsP(6) in higher concentrations than those found in mammal erythrocytes and in other more active cells such as macrophages. Our data provide further evidence of the similarity between crocodilian and avian groups and agree with the hypothesis that both groups evolved from a common ancestor. The process by which the function of inositol phosphates changed from that of intracellular signaling to hemoglobin allosteric effector is discussed.  相似文献   

13.
Eggshells from the three extant crocodilian species Crocodylus mindorensis (Philippine Crocodile), Paleosuchus palpebrosus (Cuvier's Smooth-fronted Caiman or Musky Caiman) and Alligator mississippiensis (American Alligator or Common Alligator) were prepared for thin section and scanning electron microscope analyses and are described in order to improve the knowledge on crocodilian eggs anatomy and microstructure, and to find new apomorphies that can be used for identification. Both extant and fossil crocodilian eggs present an ornamentation that vary as anastomo-, ramo- or the here newly described rugosocavate type. The angusticaniculate pore system is a shared character for Crocodylomorpha eggshells and some dinosaurian and avian groups. Previously reported signs of incubated crocodilian eggs were found also on our only fertilised and hatched egg. Paleosuchus palpebrosus presents unique organization and morphology of the three eggshell layers, with a relatively thin middle layer characterised by dense and compact tabular microstructure.  相似文献   

14.
The comparison of bone homology between the manus of an Early Cretaceous fossil crocodile and that of the extant species Alligator mississippiensis supports explicidy, for the first time, the hypothesis of carpal loss in crocodilian limb evolution. This hypothesis, based on a developmental model of the organization of the tetrapod limb, is in accordance with the fossil evidence, and may supersede traditional Haeckelian views based on recapitulatory paradigms. The homologous relationships of carpal elements reveal the existence of two carpal patterns- one plesiomorphic and one apomorphic-in the crocodilian lineage. Phylogenetic change is explained causally by alterations of the osteogenesis of the distal carpals 2 and 3, which remain unossified in extant crocodile adults. This implies that crocodilian limb evolution is constrained by a process of paedomorphosis. This modification of the architecture of the crocodilian hand is a terminal event of its evolutionary history, affecting only eusuchian crocodiles. The results of this study contest the traditional view that the skeletal pattern of the crocodilian limb has been conserved unchanged since the Triassic.  相似文献   

15.
It is well established that several wild aquatic bird species serve as reservoirs for the influenza A virus. It has also been shown that the influenza A virus can be transmitted to mammalian species such as tigers and domestic cats and dogs through ingestion of infected birds. Another group of animals that should also be considered as potential hosts for the influenza A virus are the crocodilians. Many crocodilian species share aquatic environments with wild birds that are known to harbor influenza viruses. In addition, many large crocodilians utilize birds as a significant food source. Given these factors in addition to the close taxonomic proximity of aves to the crocodilians, it is feasible to ask whether crocodilian species may also harbor the influenza A virus. Here we analyzed 37 captive crocodilians from two locations in Florida (plus 5 wild bird fecal-samples from their habitat) to detect the presence of influenza A virus. Several sample types were examined. Real-time RT-PCR tests targeting the influenza A matrix gene were positive for four individual crocodilians--Alligator sinensis, Paleosuchus trigonatus, Caiman latirostris and Crocodylus niloticus. Of the seven serum samples tested with the avian influenza virus agar gel immunodiffusion assay, three showed a nonspecific reaction to the avian influenza virus antigen-A. sinensis, P. trigonatus and C. niloticus (C. latirostris was not tested). Viable virus could not be recovered from RT-PCR-positive samples, although this is consistent with previous attempts at viral isolation in embryonated chicken eggs with crocodilian viruses.  相似文献   

16.
鳄蜥生活习性的观察   总被引:8,自引:0,他引:8  
2004~2005年,通过野外调查和半自然条件下饲养的方法研究了鳄蜥的生活习性.鳄蜥主要栖息于阔叶林、针阔混交林、灌木林荫、竹林4种植被类型的山冲溪沟之中.活动季节是4月中旬至10月上旬.主要以各种昆虫为食,对食物的种类有一定的选择性.卵胎生,4~5月产仔,双亲无育幼行为.鳄蜥在生长过程中有蜕皮现象.  相似文献   

17.
We report complete mitochondrial genomic sequences for Crocodylus acutus and Crocodylus novaeguineae, whose gene orders match those of other crocodilians. Phylogenetic analyses based on the sequences of 12 mitochondrial protein-coding genes support monophyly of two crocodilian taxonomic families, Alligatoridae (genera Alligator, Caiman, and Paleosuchus) and Crocodylidae (genera Crocodylus, Gavialis, Mecistops, Osteolaemus, and Tomistoma). Our results are consistent with monophyly of all crocodilian genera. Within Alligatoridae, genus Alligator is the sister taxon of a clade comprising Caiman and Paleosuchus. Within Crocodylidae, the basal phylogenetic split separates a clade comprising Gavialis and Tomistoma from a clade comprising Crocodylus, Mecistops, and Osteolaemus. Mecistops and Osteolaemus form the sister taxon to Crocodylus. Within Crocodylus, we sampled five Indopacific species, whose phylogenetic ordering is ((C. mindorensis, C. novaeguineae), (C. porosus, (C. siamensis, C. palustris))). The African species C. niloticus and New World species C. acutus form the sister taxon to the Indopacific species, although our sampling lacks three other New World species and an Australian species of Crocodylus.  相似文献   

18.
Accurate species delimitation is a central assumption of biology that, in groups such as the Crocodylia, is often hindered by highly conserved morphology and frequent introgression. In Africa, crocodilian systematics has been hampered by complex regional biogeography and confounded taxonomic history. We used rigorous molecular and morphological species delimitation methods to test the hypothesis that the slender-snouted crocodile (Mecistops cataphractus) is composed of multiple species corresponding to the Congolian and Guinean biogeographic zones. Speciation probability was assessed by using 11 mitochondrial and nuclear genes, and cranial morphology for over 100 specimens, representing the full geographical extent of the species distribution. Molecular Bayesian and phylogenetic species delimitation showed unanimous support for two Mecistops species isolated to the Upper Guinean and Congo (including Lower Guinean) biomes that were supported by 13 cranial characters capable of unambiguously diagnosing each species. Fossil-calibrated phylogenetic reconstruction estimated that the species split ± 6.5–7.5 Ma, which is congruent with intraspecies divergence within the sympatric crocodile genus Osteolaemus and the formation of the Cameroon Volcanic Line. Our results underscore the necessity of comprehensive phylogeographic analyses within currently recognized taxa to detect cryptic species within the Crocodylia. We recommend that the community of crocodilian researchers reconsider the conceptualization of crocodilian species especially in the light of the conservation ramifications for this economically and ecologically important group.  相似文献   

19.
A crocodilian jaw fragment from the Jurassicof Thailand is referred to a new species of the genus SunosuchusYoung,, 1948, S. thailandicus.. The genus Sunosuchus,, which is interpreted here as belonging to the family Goniopholididae (Mesosuchia),, was previously known only from the continental Jurassic of north-central China. The occurrence of this freshwater crocodilian in the Khorat Group of Thailand provides evidence that, whatever its previous palaeogeographical history may have been, by Jurassic times South-East Asia was part of Laurasia.  相似文献   

20.
In this study, using a combined data set of SSU rDNA and gGAPDH gene sequences, we provide phylogenetic evidence that supports clustering of crocodilian trypanosomes from the Brazilian Caiman yacare (Alligatoridae) and Trypanosoma grayi, a species that circulates between African crocodiles (Crocodilydae) and tsetse flies. In a survey of trypanosomes in Caiman yacare from the Brazilian Pantanal, the prevalence of trypanosome infection was 35% as determined by microhaematocrit and haemoculture, and 9 cultures were obtained. The morphology of trypomastigotes from caiman blood and tissue imprints was compared with those described for other crocodilian trypanosomes. Differences in morphology and growth behaviour of caiman trypanosomes were corroborated by molecular polymorphism that revealed 2 genotypes. Eight isolates were ascribed to genotype Cay01 and 1 to genotype Cay02. Phylogenetic inferences based on concatenated SSU rDNA and gGAPDH sequences showed that caiman isolates are closely related to T. grayi, constituting a well-supported monophyletic assemblage (clade T. grayi). Divergence time estimates based on clade composition, and biogeographical and geological events were used to discuss the relationships between the evolutionary histories of crocodilian trypanosomes and their hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号