首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Based on the crystal structure of lactose permease (LacY) open to the cytoplasm, a hybrid molecular simulation approach with self-guided Langevin dynamics is used to describe conformational changes that lead to a periplasmic-open state. This hybrid approach consists of implicit (IM) and explicit (EX) membrane simulations and requires self-guided Langevin dynamics to enhance protein motions during the IM simulations. The pore radius of the lumen increases by 3.5 Å on the periplasmic side and decreases by 2.5 Å on the cytoplasmic side (relative to the crystal structure), suggesting a lumen that is fully open to the periplasm to allow for extracellular sugar transport and closed to the cytoplasm. Based on our simulations, the mechanism that triggers this conformational change to the periplasmic-open state is the protonation of Glu269 and binding of the disaccharide. Then, helix packing is destabilized by breaking of several side chains involved in hydrogen bonding (Asn245, Ser41, Glu374, Lys42, and Gln242). For the periplasmic-open conformations obtained from our simulations, helix-helix distances agree well with experimental measurements using double electron-electron resonance, fluorescence resonance energy transfer, and varying sized cross-linkers. The periplasmic-open conformations are also in compliance with various substrate accessibility/reactivity measurements that indicate an opening of the protein lumen on the periplasmic side on sugar binding. The comparison with these measurements suggests a possible incomplete closure of the cytoplasmic half in our simulations. However, the closure is sufficient to prevent the disaccharide from transporting to the cytoplasm, which is in accordance with the well-established alternating access model. Ser53, Gln60, and Phe354 are determined to be important in sugar transport during the periplasmic-open stage of the sugar transport cycle and the sugar is found to undergo an orientational change in order to escape the protein lumen.  相似文献   

2.
The major facilitator superfamily (MFS) of transporters represents the largest family of secondary active transporters and has a diverse range of substrates. With structural information for four MFS transporters, we can see a strong structural commonality suggesting, as predicted, a common architecture for MFS transporters. The rate for crystal structure determination of MFS transporters is slow, making modeling of both prokaryotic and eukaryotic transporters more enticing. In this review, models of eukaryotic transporters Glut1, G6PT, OCT1, OCT2 and Pho84, based on the crystal structures of the prokaryotic GlpT, based on the crystal structure of LacY are discussed. The techniques used to generate the different models are compared. In addition, the validity of these models and the strategy of using prokaryotic crystal structures to model eukaryotic proteins are discussed. For comparison, E. coli GlpT was modeled based on the E. coli LacY structure and compared to the crystal structure of GlpT demonstrating that experimental evidence is essential for accurate modeling of membrane proteins.  相似文献   

3.
孙林峰  王佳伟  颜宁 《生命科学》2011,(11):1052-1056
主要协助转运蛋白超家族(major facilitator superfamily,MFS)是一个主要的次级膜转运蛋白超家族。MFS超家族蛋白转运底物的多样性使得它们在细胞物质交换和能量代谢过程中起着重要作用。从2003年第一个高分辨率的LacY蛋白三维结构的解析到现在,已经有5个细菌MFS超家族的蛋白结构被解析出来,结合大量的生化研究结果,使得对其转运的分子机制有了更为深入的理解。将对MFS超家族蛋白的三维结构和转运机理进行阐述。  相似文献   

4.
PepT1 and PepT2 are major facilitator superfamily (MFS) transporters that utilize a proton gradient to drive the uptake of di‐ and tri‐peptides in the small intestine and kidney, respectively. They are the major routes by which we absorb dietary nitrogen and many orally administered drugs. Here, we present the crystal structure of PepTSo, a functionally similar prokaryotic homologue of the mammalian peptide transporters from Shewanella oneidensis. This structure, refined using data up to 3.6 Å resolution, reveals a ligand‐bound occluded state for the MFS and provides new insights into a general transport mechanism. We have located the peptide‐binding site in a central hydrophilic cavity, which occludes a bound ligand from both sides of the membrane. Residues thought to be involved in proton coupling have also been identified near the extracellular gate of the cavity. Based on these findings and associated kinetic data, we propose that PepTSo represents a sound model system for understanding mammalian peptide transport as catalysed by PepT1 and PepT2.  相似文献   

5.
The synaptic vesicle protein 2A (SV2A), the brain-binding site of the anti-epileptic drug levetiracetam (LEV), has been characterized by Protein Tomography™. We identified two major conformations of SV2A in mouse brain tissue: first, a compact, funnel-structure with a pore-like opening towards the cytoplasm; second, a more open, V-shaped structure with a cleft-like opening towards the intravesicular space. The large differences between these conformations suggest a high degree of flexibility and support a valve-like mechanism consistent with the postulated transporter role of SV2A. These two conformations are represented both in samples treated with LEV, and in saline-treated samples, which indicates that LEV binding does not cause a large-scale conformational change of SV2A, or lock a specific conformational state of the protein. This study provides the first direct structural data on SV2A, and supports a transporter function suggested by sequence homology to MFS class of transporter proteins.  相似文献   

6.
Yead Jewel  Prashanta Dutta  Jin Liu 《Proteins》2016,84(8):1067-1074
During lactose/H+ symport, the Escherichia coli lactose permease (LacY) undergoes a series of global conformational transitions between inward‐facing (open to cytoplasmic side) and outward‐facing (open to periplasmic side) states. However, the exact local interactions and molecular mechanisms dictating those large‐scale structural changes are not well understood. All‐atom molecular dynamics simulations have been performed to investigate the molecular interactions involved in conformational transitions of LacY, but the simulations can only explore early or partial global structural changes because of the computational limits (< 100 ns). In this work, we implement a hybrid force field that couples the united‐atom protein models with the coarse‐grained MARTINI water/lipid, to investigate the proton‐dependent dynamics and conformational changes of LacY. The effects of the protonation states on two key glutamate residues (Glu325 and Glu269) have been studied. Our results on the salt‐bridge dynamics agreed with all‐atom simulations at early short time period, validating our simulations. From our microsecond simulations, we were able to observe the complete transition from inward‐facing to outward‐facing conformations of LacY. Our results showed that all helices have participated during the global conformational transitions and helical movements of LacY. The inter‐helical distances measured in our simulations were consistent with the double electron‐electron resonance experiments at both cytoplasmic and periplasmic sides. Our simulations indicated that the deprotonation of Glu325 induced the opening of the periplasmics side and partial closure of the cytoplasmic side of LacY, while protonation of the Glu269 caused a stable cross‐domain salt‐bridge (Glu130‐Arg344) and completely closed the cytoplasmic side. Proteins 2016; 84:1067–1074. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
The ribose-binding protein (RBP) is a sugar-binding bacterial periplasmic protein whose function is associated with a large allosteric conformational change from an open to a closed conformation upon binding to ribose. The crystal structures of RBP in open and closed conformations have been solved. It has been hypothesized that the open and closed conformations exist in a dynamic equilibrium in solution, and that sugar binding shifts the population from open conformations to closed conformations. Here, we study by computer simulations the thermodynamic changes that accompany this conformational change, and model the structural changes that accompany the allosteric transition, using umbrella sampling molecular dynamics and the weighted histogram analysis method. The open state is comprised of a diverse ensemble of conformations; the open ribose-free X-ray crystal conformations being representative of this ensemble. The unligated open form of RBP is stabilized by conformational entropy. The simulations predict detectable populations of closed ribose-free conformations in solution. Additional interdomain hydrogen bonds stabilize this state. The predicted shift in equilibrium from the open to the closed state on binding to ribose is in agreement with experiments. This is driven by the energetic stabilization of the closed conformation due to ribose-protein interactions. We also observe a significant population of a hitherto unobserved ribose-bound partially open state. We believe that this state is the one that has been suggested to play a role in the transfer of ribose to the membrane-bound permease complex.  相似文献   

8.
Major facilitator superfamily (MFS) transporters typically need to alternatingly sample the outward-facing and inward-facing conformations, in order to transport the substrate across membrane. To understand the mechanism, in this work, we focused on one MFS member, the L-fucose/H+ symporter (FucP), whose crystal structure exhibits an outward-open conformation. Previous experiments imply several residues critical to the substrate/proton binding and structural transition of FucP, among which Glu135, located in the periplasm-accessible vestibule, is supposed as being involved in both proton translocation and conformational change of the protein. Here, the structural transition of FucP in presence of substrate was investigated using molecular-dynamics simulations. By combining the equilibrium and accelerated simulations as well as thermodynamic calculations, not only was the large-scale conformational change from the outward-facing to inward-facing state directly observed, but also the free energy change during the structural transition was calculated. The simulations confirm the critical role of Glu135, whose protonation facilitates the outward-to-inward structural transition both by energetically favoring the inward-facing conformation in thermodynamics and by reducing the free energy barrier along the reaction pathway in kinetics. Our results may help the mechanistic studies of both FucP and other MFS transporters.  相似文献   

9.
Smirnova I  Kasho V  Kaback HR 《Biochemistry》2011,50(45):9684-9693
Crystal structures of the lactose permease of Escherichia coli (LacY) reveal 12, mostly irregular transmembrane α-helices surrounding a large cavity open to the cytoplasm and a tightly sealed periplasmic side (inward-facing conformation) with the sugar-binding site at the apex of the cavity and inaccessible from the periplasm. However, LacY is highly dynamic, and binding of a galactopyranoside causes closing of the inward-facing cavity with opening of a complementary outward-facing cavity. Therefore, the coupled, electrogenic translocation of a sugar and a proton across the cytoplasmic membrane via LacY very likely involves a global conformational change that allows alternating access of sugar- and H(+)-binding sites to either side of the membrane. Here the various biochemical and biophysical approaches that provide strong support for the alternating access mechanism are reviewed. Evidence is also presented indicating that opening of the periplasmic cavity is probably the limiting step for binding and perhaps transport.  相似文献   

10.
The Escherichia coli histidine binding protein HisJ is a type II periplasmic binding protein (PBP) that preferentially binds histidine and interacts with its cytoplasmic membrane ABC transporter, HisQMP2, to initiate histidine transport. HisJ is a bilobal protein where the larger Domain 1 is connected to the smaller Domain 2 via two linking strands. Type II PBPs are thought to undergo “Venus flytrap” movements where the protein is able to reversibly transition from an open to a closed conformation. To explore the accessibility of the closed conformation to the apo state of the protein, we performed a set of all‐atom molecular dynamics simulations of HisJ starting from four different conformations: apo‐open, apo‐closed, apo‐semiopen, and holo‐closed. The simulations reveal that the closed conformation is less dynamic than the open one. HisJ experienced closing motions and explored semiopen conformations that reverted to closed forms resembling those found in the holo‐closed state. Essential dynamics analysis of the simulations identified domain closing/opening and twisting as main motions. The formation of specific inter‐hinge strand and interdomain polar interactions contributed to the adoption of the closed apo‐conformations although they are up to 2.5‐fold less prevalent compared with the holo‐closed simulations. The overall sampling of the closed form by apo‐HisJ provides a rationale for the binding of unliganded PBPs with their cytoplasmic membrane ABC transporters. Proteins 2014; 82:386–398. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
YajR is an Escherichia coli transporter that belongs to the major facilitator superfamily. Unlike most MFS transporters, YajR contains a carboxyl terminal, cytosolic domain of 67 amino acid residues termed YAM domain. Although it is speculated that the function of this small soluble domain is to regulate the conformational change of the 12-helix transmembrane domain, its precise regulatory role remains unclear. Here, we report the crystal structure of the YAM domain at 1.07-Å resolution, along with its structure determined using nuclear magnetic resonance. Detailed analysis of the high resolution structure revealed a symmetrical dimer in which a belt of well-ordered poly-pentagonal water molecules is embedded. A mutagenesis experiment and a thermal stability assay were used to analyze the putative role of this dimerization in response to changes in halogen concentration.  相似文献   

12.
Biochemical and biophysical studies based upon crystal structures of both a mutant and wild-type lactose permease from Escherichia coli (LacY) in an inward-facing conformation have led to a model for the symport mechanism in which both sugar and H+ binding sites are alternatively accessible to both sides of the membrane. Previous findings indicate that the face of helix II with Asp68 is important for the conformational changes that occur during turnover. As shown here, replacement of Asp68 at the cytoplasmic end of helix II, particularly with Glu, abolishes active transport but the mutants retain the ability to bind galactopyranoside. In the x-ray structure, Asp68 and Lys131 (helix IV) lie within ∼ 4.2 Å of each other. Although a double mutant with Cys replacements at both position 68 and position 131 cross-links efficiently, single replacements for Lys131 exhibit very significant transport activity. Site-directed alkylation studies show that sugar binding by the Asp68 mutants causes closure of the cytoplasmic cavity, similar to wild-type LacY; however, strikingly, the probability of opening the periplasmic pathway upon sugar binding is markedly reduced. Taken together with results from previous mutagenesis and cross-linking studies, these findings lead to a model in which replacement of Asp68 blocks a conformational transition involving helices II and IV that is important for opening the periplasmic cavity. Evidence suggesting that movements of helices II and IV are coupled functionally with movements in the pseudo-symmetrically paired helices VIII and X is also presented.  相似文献   

13.
Baker J  Wright SH  Tama F 《Proteins》2012,80(6):1620-1632
EmrD is a multidrug resistance (MDR) transporter from Escherichia coli, which is involved in the efflux of amphipathic compounds from the cytoplasm, and the first MDR member of the major facilitator superfamily to be crystallized. Molecular dynamics simulation of EmrD in a phospholipid bilayer was used to characterize the conformational dynamics of the protein. Motions that support a previously proposed lateral diffusion pathway for substrate from the cytoplasmic membrane leaflet into the EmrD central cavity were observed. In addition, the translocation pathway of meta-chloro carbonylcyanide phenylhydrazone (CCCP) was probed using both standard and steered molecular dynamics simulation. In particular, interactions of a few specific residues with CCCP have been identified. Finally, a large motion of two residues, Val 45 and Leu 233, was observed with the passage of CCCP into the periplasmic space, placing a lower bound on the extent of opening required at this end of the protein for substrate transport. Overall, our simulations probe details of the transport pathway, motions of EmrD at an atomic level of detail, and offer new insights into the functioning of MDR transporters.  相似文献   

14.
Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate:phosphate antiporters.  相似文献   

15.
The Δ‐distance maps can detect local remodeling that is difficult to accurately determine using superimpositions. Transmembrane segments (TMSs) 11 in both LacY and XylE of the major facilitator superfamily uniquely contribute the greatest amount of mobile surface area in the outward‐occluded state and undergo analogous movements. The intracellular part of TMS11 moves away from the C‐terminal domain and into the substrate cavity during the conformational change from the outward‐occluded to the inward‐occluded state. A difference was noted between LacY and XylE when they assumed the inward open state after releasing a substrate to the inside in which TMS11 of LacY moved further into the substrate release space, whereas in XylE, TMS11 slightly retracted into the C‐terminal domain. Independent movement of the N‐terminal half of TMS11 suggests that it is flexible in the middle. Repeat‐swapped homology modeling was used to discover that a loop connecting TMSs 10 and 11 in LacY probably moves during the transition between the unavailable outward‐open state and the outward‐occluded state. TMSs 11 and the other elements displaying a notable domain‐independent movement colocalize with the interdomain linker, suggesting that these elements could drive the alternating access movement between the domain halves. Preliminary evidence indicates that analogous movements occur in other members of the major facilitator superfamily. Proteins 2015; 83:735–745. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
There is a limited understanding of the folding of multidomain membrane proteins. Lactose permease (LacY) of Escherichia coli is an archetypal member of the major facilitator superfamily of membrane transport proteins, which contain two domains of six transmembrane helices each. We exploit chemical denaturation to determine the unfolding free energy of LacY and employ Trp residues as site-specific thermodynamic probes. Single Trp LacY mutants are created with the individual Trps situated at mirror image positions on the two LacY domains. The changes in Trp fluorescence induced by urea denaturation are used to construct denaturation curves from which unfolding free energies can be determined. The majority of the single Trp tracers report the same stability and an unfolding free energy of approximately + 2 kcal mol− 1. There is one exception; the fluorescence of W33 at the cytoplasmic end of helix I on the N domain is unaffected by urea. In contrast, the equivalent position on the first helix, VII, of the C-terminal domain exhibits wild-type stability, with the single Trp tracer at position 243 on helix VII reporting an unfolding free energy of + 2 kcal mol− 1. This indicates that the region of the N domain of LacY at position 33 on helix I has enhanced stability to urea, when compared the corresponding location at the start of the C domain. We also find evidence for a potential network of stabilising interactions across the domain interface, which reduces accessibility to the hydrophilic substrate binding pocket between the two domains.  相似文献   

17.
18.
Lactose permease in Escherichia coli (LacY) transports both anomeric states of disaccharides but has greater affinity for α-sugars. Molecular dynamics (MD) simulations are used to probe the protein-sugar interactions, binding structures, and global protein motions in response to sugar binding by investigating LacY (the experimental mutant and wild-type) embedded in a fully hydrated lipid bilayer. A total of 12 MD simulations of 20-25 ns each with β(α)-d-galactopyranosyl-(1,1)-β-d-galactopyranoside (ββ-(Galp)2) and αβ-(Galp)2 result in binding conformational families that depend on the anomeric state of the sugar. Both sugars strongly interact with Glu126 and αβ-(Galp)2 has a greater affinity to this residue. Binding conformations are also seen that involve protein residues not observed in the crystal structure, as well as those involved in the proton translocation (Phe118, Asn119, Asn240, His322, Glu325, and Tyr350). Common to nearly all protein-sugar structures, water acts as a hydrogen bond bridge between the disaccharide and protein. The average binding energy is more attractive for αβ-(Galp)2 than ββ-(Galp)2, i.e. −10.7(±0.7) and −3.1(±1.0) kcal/mol, respectively. Of the 12 helices in LacY, helix-IV is the least stable with ββ-(Galp)2 binding resulting in larger distortion than αβ-(Galp)2.  相似文献   

19.
Adenylate kinase (AdK), a phosphotransferase enzyme, plays an important role in cellular energy homeostasis. It undergoes a large conformational change between an open and a closed state, even in the absence of substrate. We investigate the apo-AdK transition at the atomic level both with free-energy calculations and with our new dynamic importance sampling (DIMS) molecular dynamics method. DIMS is shown to sample biologically relevant conformations as verified by comparing an ensemble of hundreds of DIMS transitions to AdK crystal structure intermediates. The simulations reveal in atomic detail how hinge regions partially and intermittently unfold during the transition. Conserved salt bridges are seen to have important structural and dynamic roles; in particular, four ionic bonds that open in a sequential, zipper-like fashion and, thus, dominate the free-energy landscape of the transition are identified. Transitions between the closed and open conformations only have to overcome moderate free-energy barriers. Unexpectedly, the closed state and the open state encompass broad free-energy basins that contain conformations differing in domain hinge motions by up to 40°. The significance of these extended states is discussed in relation to recent experimental Förster resonance energy transfer measurements. Taken together, these results demonstrate how a small number of cooperative key interactions can shape the overall dynamics of an enzyme and suggest an “all-or-nothing” mechanism for the opening and closing of AdK. Our efficient DIMS molecular dynamics computer simulation approach can provide a detailed picture of a functionally important macromolecular transition and thus help to interpret and suggest experiments to probe the conformational landscape of dynamic proteins such as AdK.  相似文献   

20.
The preprotein cross-linking domain and C-terminal domains of Escherichia coli SecA were removed to create a minimal DEAD motor, SecA-DM. SecA-DM hydrolyzes ATP and has the same affinity for ADP as full-length SecA. The crystal structure of SecA-DM in complex with ADP was solved and shows the DEAD motor in a closed conformation. Comparison with the structure of the E. coli DEAD motor in an open conformation (Protein Data Bank ID 2FSI) indicates main-chain conformational changes in two critical sequences corresponding to Motif III and Motif V of the DEAD helicase family. The structures that the Motif III and Motif V sequences adopt in the DEAD motor open conformation are incompatible with the closed conformation. Therefore, when the DEAD motor makes the transition from open to closed, Motif III and Motif V are forced to change their conformations, which likely functions to regulate passage through the transition state for ATP hydrolysis. The transition state for ATP hydrolysis for the SecA DEAD motor was modeled based on the conformation of the Vasa helicase in complex with adenylyl imidodiphosphate and RNA (Protein Data Bank ID 2DB3). A mechanism for chemical-mechanical coupling emerges, where passage through the transition state for ATP hydrolysis is hindered by the conformational changes required in Motif III and Motif V, and may be promoted by binding interactions with the preprotein substrate and/or other translocase domains and subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号