首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two dUTPase isoforms (23 kDa and 21 kDa) are present in the fruitfly with the sole difference of an N-terminal extension. In Drosophila embryo, both isoforms are detected inside the nucleus. Here, we investigated the function of the N-terminal segment using eYFP-dUTPase constructs. In Schneider 2 cells, only the 23 kDa construct showed nuclear localization arguing that it may contain a nuclear localization signal (NLS). Sequence comparisons identified a lysine-rich nonapeptide with similarity to the human c-myc NLS. In Drosophila embryos during nuclear cleavages, the 23 kDa isoform showed the expected localization shifts. Contrariwise, although the 21 kDa isoform was excluded from the nuclei during interphase, it was shifted to the nucleus during prophase and forthcoming mitotic steps. The observed dynamic localization character showed strict timing to the nuclear cleavage phases and explained how both isoforms can be present within the nuclear microenvironment, although at different stages of cell cycle.  相似文献   

2.
3.
It is becoming increasingly apparent that the nucleus harbors metabolic enzymes that affect genetic transforming events. Here, we describe a nuclear isoform of lactate dehydrogenase (nLDH) and its ability to orchestrate histone deacetylation by controlling the availability of nicotinamide adenine dinucleotide (NAD+), a key ingredient of the sirtuin-1 (SIRT1) deacetylase system. There was an increase in the expression of nLDH concomitant with the presence of hydrogen peroxide (H2O2) in the culture medium. Under oxidative stress, the NAD+ generated by nLDH resulted in the enhanced deacetylation of histones compared to the control hepatocytes despite no discernable change in the levels of SIRT1. There appeared to be an intimate association between nLDH and SIRT1 as these two enzymes co-immunoprecipitated. The ability of nLDH to regulate epigenetic modifications by manipulating NAD+ reveals an intricate link between metabolism and the processing of genetic information.  相似文献   

4.
5.
Certain actin-related proteins (Arps) of budding yeast are localized in the nucleus, and have essential roles as stoichiometric components of histone acetyltransferase (HAT) and chromatin remodeling complexes. On the other hand, identification of vertebrate nuclear Arps and their functional analyses are just beginning. We show that human Arp5 (hArp5) proteins are localized in the nucleus, and that arp5Δ yeast cells are partially complemented by hArp5. Thus, hArp5 is a novel member of the nuclear Arps of vertebrates, which possess evolutionarily conserved functions from yeast to humans. We show here that hArp5 shuttles between the nucleus and the cytoplasm. Furthermore, after the induction of DNA double strand breaks (DSB), cell growth and the accumulation of phosphorylated histone H2AX (γ-H2AX) are impaired by hArp5 depletion. Association of hArp5 with the hIno80 chromatin remodeling enzyme and decrease of chromatin-bound hIno80 by hArp5-depletion indicate that hArp5 may have a role in the recruitment of the hINO80 complex to chromatin. Overexpression of hArp5 and hIno80 enhanced γ-H2AX accumulation. These observations suggest that hArp5 is involved in the process of DSB repair through the regulation of the chromatin remodelling machinery.  相似文献   

6.
The α and β isoforms of DNA topoisomerase II (topo II) are targets for several widely used chemotherapeutic agents, and resistance to some of these drugs may be associated with reduced nuclear localization of the α isoform. Human topo IIα contains a strong bipartite nuclear localization signal (NLS) sequence between amino acids 1454 and 1497 (αNLS1454–1497). In the present study, we show that human topo IIα tagged with green fluorescence protein is still detectable in the nucleus when αNLS1454–1497 has been disrupted. Seven additional regions in topo IIα containing overlapping potential bipartite NLSs were evaluated for their nuclear targeting abilities using a β-galactosidase reporter system. A moderately functional NLS was identified between amino acids 1259 and 1296. When human topo IIβ was examined in a similar fashion, it was found to contain two strongly functional sequences βNLS1522–1548 and βNLS1538–1573 in the region of topo IIβ comparable to the region in topo IIα that contains the strongly functional αNLS1454–1497. The third, βNLS1294–1332, although weaker than the other two β sequences, is significantly stronger than the analogous αNLS1259–1296. Differences in the NLS sequences of human topo II isoforms may contribute to their differences in subnuclear localization.  相似文献   

7.
Yeast silent information regulator 2 (SIR2) is involved in extension of yeast longevity by calorie restriction, and SIRT3, SIRT4, and SIRT5 are mammalian homologs of SIR2 localized in mitochondria. We have investigated the localization of these three SIRT proteins of mouse. SIRT3, SIRT4, and SIRT5 proteins were localized in different compartments of the mitochondria. When SIRT3 and SIRT5 were co-expressed in the cell, localization of SIRT3 protein changed from mitochondria to nucleus. These results suggest that the SIRT3, SIRT4, and SIRT5 proteins exert distinct functions in mitochondria. In addition, the SIRT3 protein might function in nucleus.  相似文献   

8.
9.
Most current models of mRNA nuclear export in vertebrate cells assume that an mRNA must have specialized signals in order to be exported from the nucleus. Under such a scenario, mRNAs that lack these specialized signals would be shunted into a default pathway where they are retained in the nucleus and eventually degraded. These ideas were based on the selective use of model mRNA reporters. For example, it has been shown that splicing promotes the nuclear export of certain model mRNAs, such as human β-globin, and that in the absence of splicing, the cDNA-derived mRNA is retained in the nucleus and degraded. Here we provide evidence that β-globin mRNA contains an element that actively retains it in the nucleus and degrades it. Interestingly, this nuclear retention activity can be overcome by increasing the length of the mRNA or by splicing. Our results suggest that contrary to many current models, the default pathway for most intronless RNAs is to be exported from the nucleus, unless the RNA contains elements that actively promote its nuclear retention.  相似文献   

10.
11.
12.
13.
The incidence of diabetes, obesity, and metabolic diseases has reached an epidemic status worldwide. Insulin resistance is a common link in the development of these conditions, and hyperinsulinemia is a central hallmark of peripheral insulin resistance. However, how hyperinsulinemia leads to systemic insulin resistance is less clear. We now provide evidence that hyperinsulinemia promotes the release of soluble pro-inflammatory mediators from macrophages that lead to systemic insulin resistance. Our observations suggest that hyperinsulinemia induces sirtuin1 (SIRT1) repression and stimulates NF-κB p65 nuclear translocation and transactivation of NF-κB to promote the extracellular release of pro-inflammatory mediators. We further showed that low-dose naltrexone (LDN) abrogates hyperinsulinemia-mediated SIRT1 repression and prevents NF-κB p65 nuclear translocation. This, in turn, attenuates the hyperinsulinemia-induced release of pro-inflammatory cytokines and reinstates insulin sensitivity both in in vitro and in vivo diet-induced hyperinsulinemic mouse model. Notably, our data indicate that Sirt1 knockdown or inhibition blunts the anti-inflammatory properties of LDN in vitro. Using numerous complementary in silico and in vitro experimental approaches, we demonstrated that LDN can bind to SIRT1 and increase its deacetylase activity. Together, these data support a critical role of SIRT1 in inflammation and insulin resistance in hyperinsulinemia. LDN improves hyperinsulinemia-induced insulin resistance by reorienting macrophages toward anti-inflammation. Thus, LDN treatment may provide a novel therapeutic approach against hyperinsulinemia-associated insulin resistance.  相似文献   

14.
ING4 (inhibitor of growth 4) is a candidate tumor suppressor gene that is implicated as a repressor of cell growth, angiogenesis, cell spreading and cell migration and can suppress loss of contact inhibition in vitro. Another group and we identified four wobble-splicing isoforms of ING4 generated by alternative splicing at two tandem splice sites, GC(N)7GT and NAGNAG, which caused canonical (GT-AG) and non-canonical (GC-AG) splice site wobbling selection. Expression of the four ING4 wobble-splicing isoforms did not vary significantly in any of the cell lines examined. Here we show that ING4_v1 is translocated to the nucleolus, indicating that ING4 contains an intrinsic nucleolar localization signal. We further demonstrate that the subcellular localization of ING4 is modulated by two wobble-splicing events at the exon 4-5 boundary, causing displacement from the nucleolus to the nucleus. We also observed that ING4 is degraded through the ubiquitin-proteasome pathway and that it is subjected to N-terminal ubiquitination. We demonstrate that nucleolar accumulation of ING4 prolongs its half-life, but lack of nucleolar targeting potentially increases ING4 degradation. Taken together, our data suggest that the two wobble-splicing events at the exon 4-5 boundary influence subnuclear localization and degradation of ING4.  相似文献   

15.
16.
The sole gateway for molecular exchange between the cytoplasm and the nucleus is the nuclear pore complex (NPC). This large supramolecular assembly mediates transport of cargo into and out of the nucleus and fuse the inner and outer nuclear membranes to form an aqueous translocation channel. The NPC is composed of eight proteinaceous asymmetric units forming a pseudo-8-fold symmetric passage. Due to its shear size, complexity, and plastic nature, dissecting the high-resolution three-dimensional structure of the NPC in its hydrated state is a formidable challenge. Toward this goal, we applied cryo-electron tomography to spread nuclear envelopes from Xenopus oocytes. To compensate for perturbations of the 8-fold symmetry of individual NPCs, we performed symmetry-independent asymmetric unit averaging of three-dimensional tomographic NPC volumes to eventually yield a refined model at 6.4 nm resolution. This approach revealed novel structural features, particularly in the spoke-ring complex and luminal domains. Fused concentric ring architecture of the spoke-ring complex was found along the translocation channel. Additionally, a comparison of the refined Xenopus model to that of its Dictyostelium homologue yielded similar pore diameters at the level of the three canonical rings, although the Xenopus NPC was found to be 30% taller than the Dictyostelium pore. This discrepancy is attributed primarily to the relatively low homology and different organization of some nucleoporins in the Dictyostelium genome as compared to that of vertebrates. Nevertheless, the experimental conditions impose a preferred axial orientation of the NPCs within spread Xenopus oocyte nuclear envelopes. This may at least in part explain the increased height of the reconstructed vertebrate NPCs compared to those obtained from tomographic reconstruction of intact Dictyostelium nuclei.  相似文献   

17.
18.
SIRT6 belongs to the mammalian homologs of Sir2 histone NAD+-dependent deacylase family. In rodents, SIRT6 deficiency leads to aging-associated degeneration of mesodermal tissues. It remains unknown whether human SIRT6 has a direct role in maintaining the homeostasis of mesodermal tissues. To this end, we generated SIRT6 knockout human mesenchymal stem cells (hMSCs) by targeted gene editing. SIRT6-deficient hMSCs exhibited accelerated functional decay, a feature distinct from typical premature cellular senescence. Rather than compromised chromosomal stability, SIRT6-null hMSCs were predominately characterized by dysregulated redox metabolism and increased sensitivity to the oxidative stress. In addition, we found SIRT6 in a protein complex with both nuclear factor erythroid 2-related factor 2 (NRF2) and RNA polymerase II, which was required for the transactivation of NRF2-regulated antioxidant genes, including heme oxygenase 1 (HO-1). Overexpression of HO-1 in SIRT6-null hMSCs rescued premature cellular attrition. Our study uncovers a novel function of SIRT6 in maintaining hMSC homeostasis by serving as a NRF2 coactivator, which represents a new layer of regulation of oxidative stress-associated stem cell decay.  相似文献   

19.
20.
SIRT1, the closest mammalian homolog of yeast Sir2, is an NAD+-dependent deacetylase with relevant functions in cancer, aging, and metabolism among other processes. SIRT1 has a diffuse nuclear localization but is recruited to the PML nuclear bodies (PML-NBs) after PML upregulation. However, the functions of SIRT1 in the PML-NBs are unknown. In this study we show that primary mouse embryo fibroblasts lacking SIRT1 contain reduced PML protein levels that are increased after reintroduction of SIRT1. In addition, overexpression of SIRT1 in HEK-293 cells increases the amount of PML protein whereas knockdown of SIRT1 reduces the size and number of PML-NBs and the levels of PML protein in HeLa cells. SIRT1 stimulates PML sumoylation in vitro and in vivo in a deacetylase-independent manner. Importantly, the absence of SIRT1 reduces the apoptotic response of vesicular stomatitis virus-infected cells and favors the extent of this PML-sensitive virus replication. These results show a novel function of SIRT1 in the control of PML and PML-NBs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号