首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 178 毫秒
1.
Actin cytoskeleton undergoes rapid reorganization in response to internal and external cues. How the dynamics of actin cytoskeleton are regulated, and how its dynamics relate to its function are fundamental questions in plant cell biology. The pollen tube is a well characterized actin-based cell morphogenesis in plants. One of the striking features of actin cytoskeleton characterized in the pollen tube is its surprisingly low level of actin polymer. This special phenomenon might relate to the function of actin cytoskeleton in pollen tubes. Understanding the molecular mechanism underlying this special phenomenon requires careful analysis of actin-binding proteins that modulate actin dynamics directly. Recent biochemical and biophysical analyses of several highly conserved plant actin-binding proteins reveal unusual and unexpected properties, which emphasizes the importance of carefully analyzing their action mechanism and cellular activity. In this review, we highlight an actin monomer sequestering protein, a barbed end capping protein and an F-actin severing and dynamizing protein in plant. We propose that these proteins function in harmony to regulate actin dynamics and maintain the low level of actin polymer in pollen tubes.  相似文献   

2.
The organization and dynamics of the actin cytoskeleton play key roles in many aspects of plant cell development. The actin cytoskeleton responds to internal developmental cues and en-vironmental signals and is involved in cell division, subcellular organelle movement, cell polarity and polar cell growth. The tip-growing pollen tubes provide an ideal model system to investigate fundamental mechanisms of underlying polarized cell growth. In this system, most signaling cascades required for tip growth, such as Ca~(2+)-, small GTPases- and lipid-mediated signaling have been found to be involved in transmitting signals to a large group of actin-binding proteins. These actin-binding proteins subsequently regulate the structure of the actin network, as well as the rapid turnover of actin filaments (F-actin), thereby eventually controlling tip growth. The actin cytoskeleton acts as an integrator in which multiple signaling pathways converge, providing a general growth and regulatory mechanism that applies not only for tip growth but also for polarized diffuse growth in plants.  相似文献   

3.
Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.  相似文献   

4.
To understand the role of the actin cytoskeleton in cell physiology, and how actin-binding proteins regulate the actin cytoskeleton in vivo, we and others previously identified actin-binding proteins in Saccharomyces cerevisiae and studied the effect of null mutations in the genes for these proteins. A null mutation of the actin gene (ACT1) is lethal, but null mutations in the tropomyosin (TPM1), fimbrin (SAC6), Abp1p (ABP1), and capping protein (CAP1 and CAP2) genes have relatively mild or no effects. We have now constructed double and triple mutants lacking 2 or 3 of these actin-binding proteins, and studied the effect of the combined mutations on cell growth, morphology, and organization of the actin cytoskeleton. Double mutants lacking fimbrin and either Abp1p or capping protein show negative synthetic effects on growth, in the most extreme case resulting in lethality. All other combinations of double mutations and the triple mutant lacking tropomyosin, Abp1p, and capping protein, are viable and their phenotypes are similar to or only slightly more severe than those of the single mutants. Therefore, the synthetic phenotypes are highly specific. We confirmed this specificity by overexpression of capping protein and Abp1p in strains lacking fimbrin. Thus, while overexpression of these proteins has deleterious effects on actin organization in wild-type strains, no synthetic phenotype was observed in the absence of fimbrin. We draw two important conclusions from these results. First, since mutations in pairs of actin-binding protein genes cause inviability, the actin cytoskeleton of yeast does not contain a high degree of redundancy. Second, the lack of structural and functional homology among these genetically redundant proteins (fimbrin and capping protein or Abp1p) indicates that they regulate the actin cytoskeleton by different mechanisms. Determination of the molecular basis for this surprising conclusion will provide unique insights into the essential mechanisms that regulate the actin cytoskeleton.  相似文献   

5.
The actin cytoskeleton plays a central role in many cell biological processes. The structure and dynamics of the actin cytoskeleton are regulated by numerous actin-binding proteins that usually contain one of the few known actin-binding motifs. WH2 domain (WASP homology domain-2) is a approximately 35 residue actin monomer-binding motif, that is found in many different regulators of the actin cytoskeleton, including the beta-thymosins, ciboulot, WASP (Wiskott Aldrich syndrome protein), verprolin/WIP (WASP-interacting protein), Srv2/CAP (adenylyl cyclase-associated protein) and several uncharacterized proteins. The most highly conserved residues in the WH2 domain are important in beta-thymosin's interactions with actin monomers, suggesting that all WH2 domains may interact with actin monomers through similar interfaces. Our sequence database searches did not reveal any WH2 domain-containing proteins in plants. However, we found three classes of these proteins: WASP, Srv2/CAP and verprolin/WIP in yeast and animals. This suggests that the WH2 domain is an ancient actin monomer-binding motif that existed before the divergence of fungal and animal lineages.  相似文献   

6.
Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation [1]. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plant-specific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines?a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.  相似文献   

7.
Phosphoinositide-specific phospholipase C (PI-PLC) activities are involved in mediating plant cell responses to environmental stimuli. Two variants of PI-PLC have been partially purified from the roots of oat seedlings; one cytosolic and one particulate. Although the cytosolic enzyme was significantly purified, the activity still co-migrated with a number of other proteins on heparin HPLC and also on size-exclusion chromatography. The partially purified PI-PLC was tested by Western blotting, and we found that actin and actin-binding proteins, profilin and tropomyosin, co-purified with cytosolic phospholipase C. After a non-ionic detergent (Triton X-100) treatment, PI-PLC activities still remained with the actin cytoskeleton. The effects of phalloidin and F-buffer confirmed this association; these conditions, which favor actin polymerization, decreased the release of PI-PLC from the cytoskeleton. The treatments of latrunculin and G-buffer, the conditions that favor actin depolymerization, increased the release of PI-PLC from the cytoskeleton. These results suggest that oat PI-PLC associates with the actin cytoskeleton.  相似文献   

8.
The ADF/cofilin family: actin-remodeling proteins   总被引:1,自引:0,他引:1       下载免费PDF全文
Maciver SK  Hussey PJ 《Genome biology》2002,3(5):reviews3007.1-reviews300712
The ADF/cofilins are a family of actin-binding proteins expressed in all eukaryotic cells so far examined. Members of this family remodel the actin cytoskeleton, for example during cytokinesis, when the actin-rich contractile ring shrinks as it contracts through the interaction of ADF/cofilins with both monomeric and filamentous actin. The depolymerizing activity is twofold: ADF/cofilins sever actin filaments and also increase the rate at which monomers leave the filament's pointed end. The three-dimensional structure of ADF/cofilins is similar to a fold in members of the gelsolin family of actin-binding proteins in which this fold is typically repeated three or six times; although both families bind polyphosphoinositide lipids and actin in a pH-dependent manner, they share no obvious sequence similarity. Plants and animals have multiple ADF/cofilin genes, belonging in vertebrates to two types, ADF and cofilins. Other eukaryotes (such as yeast, Acanthamoeba and slime moulds) have a single ADF/cofilin gene. Phylogenetic analysis of the ADF/cofilins reveals that, with few exceptions, their relationships reflect conventional views of the relationships between the major groups of organisms.  相似文献   

9.
The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP-actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP- and ATP-monomeric actin (Kd approximately 1.3 microM). Binding of AtCAP1 to ATP-actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux of subunits through actin filament barbed ends. Collectively, these results and our understanding of other actin-binding proteins implicate CAP1 as a central player in regulating the pool of unpolymerized ATP-actin.  相似文献   

10.
The driving forces for the regulation of cell morphology are the Rho family GTPases that coordinate the assembly of the actin cytoskeleton. This dynamic feature is a result of tight coupling between the cytoskeleton and signal transduction and is facilitated by actin-binding proteins (ABPs). Mutations in the actin bundling and PDZ domain-containing protein harmonin are the causes of Usher syndrome type 1C (USH1C), a syndrome of congenital deafness and progressive blindness, as well as certain forms of non-syndromic deafness. Here, we have used the yeast two-hybrid assay to isolate molecular partners of harmonin and identified DOCK4, an unconventional guanine exchange factor for the Rho family of guanosine triphosphatases (Rho GEF GTPases), as a protein interacting with harmonin. Detailed molecular analysis revealed that a novel DOCK4 isoform (DOCK4-Ex49) is expressed in the brain, eye and inner ear tissues. We have further provided evidence that the DOCK4-Ex49 binds to nucleotide free Rac as effectively as DOCK2 and DOCK4 and it is a potent Rac activator. By immunostaining using a peptide antibody specific to DOCK4-Ex49, we showed its localization in the inner ear within the hair bundles along the stereocilia (SC). Together, our data indicate a possible Rac-DOCK4-ABP harmonin-activated signaling pathway in regulating actin cytoskeleton organization in stereocilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号