首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological theory suggests that the coexistence of species is promoted by the partitioning of available resources, as in dietary niche partitioning where predators partition prey. Yet, the mechanisms underlying dietary niche partitioning are not always clear. We used fecal DNA metabarcoding to investigate the diets of seven nocturnal insectivorous bird and bat species. Low diet overlap (2%–22%) supported resource partitioning among all species. Differences in diet corresponded with species identity, prey detection method, and foraging behavior of predators. Insects with ultrasonic hearing capabilities were consumed significantly more often by birds than bats, consistent with an evolved avoidance of echolocating strategies. In turn, bats consumed a greater proportion of noneared insects such as spruce budworms. Overall, our results suggest that evolutionary interactions among bats and moths translate to dietary niche partitioning and coexistence among bats and nocturnal birds.  相似文献   

2.
The intermediate leaf-nosed bat ( Hipposideros larvatus ) is a medium-sized bat distributed throughout the Indo-Malay region. In north-east India, bats identified as H. larvatus captured at a single cave emitted echolocation calls with a bimodal distribution of peak frequencies, around either 85 kHz or 98 kHz. Individuals echolocating at 85 kHz had larger ears and longer forearms than those echolocating at 98 kHz, although no differences were detected in either wing morphology or diet, suggesting limited resource partitioning. A comparison of mitochondrial control region haplotypes of the two phonic types with individuals sampled from across the Indo-Malay range supports the hypothesis that, in India, two cryptic species are present. The Indian 98-kHz phonic bats formed a monophyletic clade with bats from all other regional populations sampled, to the exclusion of the Indian 85-kHz bats. In India, the two forms showed 12–13% sequence divergence and we propose that the name Hipposideros khasiana for bats of the 85-kHz phonic type. Bats of the 98-kHz phonic type formed a monophyletic group with bats from Myanmar, and corresponded to Hipposideros grandis , which is suggested to be a species distinct from Hipposideros larvatus . Differences in echolocation call frequency among populations did not reflect phylogenetic relationships, indicating that call frequency is a poor indicator of evolutionary history. Instead, divergence in call frequency probably occurs in allopatry, possibly augmented by character displacement on secondary contact to facilitate intraspecific communication.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 119–130.  相似文献   

3.
Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts.  相似文献   

4.
In North America, the greatest and most sudden threat to hibernating bats is white‐nose syndrome (WNS), which has caused massive declines in populations since 2006. Other determinants of bat dynamics, such as the climate, and the effect of reduction in the number of individuals sharing foraging space and summer roosting habitat may have an effect on population dynamics. We analyzed transect acoustic bat surveys conducted with ultrasonic detectors in 16 regions in Quebec, Canada, between 2000 and 2015. We used piecewise regression to describe changes in activity over time for each species and a meta‐analytic approach to measure its association with the North Atlantic Oscillation (NAO). As expected, mouse‐eared bat (Myotis spp.) activity sharply declined after the onset of WNS, down by 79% after 3 years. In contrast, big brown/silver‐haired bat activity increased over the same period, possibly due to a release of competition. Hoary bats and red bats remained present, although their activity did not increase. Myotis activity was positively correlated with a one‐year lag to the NAO index, associated with cold conditions in winter, but warm autumns. Big brown/silver‐haired and hoary bats were also more active during NAO‐positive years but without a lag. We conclude that combinations of threats may create rapid shifts in community compositions and that a more balanced research agenda that integrates a wider range of threats would help better understand and manage those changes.  相似文献   

5.
Bats utilize forests as roosting sites and feeding areas. However, it has not been documented how bats utilize these habitats in the boreal zone with methods afforded by recent technological advances. Forest structure and management practices can create a variety of three‐dimensional habitats for organisms capable of flight, such as bats. Here, we study the presence of boreal bats in a forest forming a mosaic of different age classes, dominant tree species, canopy cover, soil fertility, and other environmental variables, throughout their active season in the summer using passive ultrasound detectors. Our results indicate a preference for mature forest by Eptesicus nilssonii and a pooled set of Myotis bats. Both groups of bats also showed temporal changes in their habitat use regarding forest age. In June and July, both groups occurred more often in mature than young forests, but from August onwards, the difference in occurrence became less evident in Myotis and disappeared completely in E. nilssonii. In addition, E. nilssonii was more often present in forests with low canopy cover, and its occurrence shifted from coniferous forests to deciduous forests during the season. The results reflect the within‐season dynamics of bat communities and their ability to utilize different types of forest as environmental conditions change. Yet, the results most importantly emphasize the importance of mature forests to bat diversity and the need to conserve such environments in the boreal zone.  相似文献   

6.
Nonsessile animals could partition the use of resources in different axes, reducing the effects of competition and allowing coexistence. Here, we investigated the spatial and trophic niche dimensions in four lizard assemblages in the Neotropical semiarid Caatinga to investigate the determinants of resource use and the extent to which lizards partition their niches. We sampled each lizard assemblage once, for 10 days, in the dry season of 2017 and 2018. In two lizard assemblages, we detected nonrandom niche overlap patterns that were higher or lower than expected by chance. The high niche overlap patterns suggest that either there is intense current competition for available microhabitats or an abundance of microhabitats. The lower niche overlap may be influenced by the presence of species adapted to sandy habitats (psammophilous), suggesting that spatial partitioning detected has historical basis, which is supported by the pPCA results and by the lack of patterns in the realized niche distribution of species across niche space. We detected trophic niche partitioning in three lizard assemblages. In one assemblage, we discovered random spatial and trophic niche overlap patterns, revealing that competition is not a determining factor in the structure of that assemblage. In fact, phylogenetic effects were predominantly the main determinants of resource use in the four studied lizard assemblages. Arid and semiarid habitats cover about one third of land surface of the world. Comparisons between our findings and those from other regions of the world may aid identify general trends in the lizard ecology of dry environments.  相似文献   

7.
The study of animal–habitat interactions is of primary importance for the formulation of conservation recommendations. Flying, gliding, and climbing animals have the ability to exploit their habitat in a three‐dimensional way, and the vertical canopy structure in forests plays an essential role for habitat suitability. Forest bats as flying mammals may seasonally shift their microhabitat use due to differing energy demands or changing prey availability, but the patterns are not well understood. We investigated three‐dimensional and seasonal habitat use by insectivorous bats in a temperate lowland old‐growth forest, the Belovezhskaya Pushcha in Belarus. We acoustically sampled broadleaved and mixed coniferous plots in the forest interior and in gaps in three heights during two reproductive periods (pregnancy/lactation vs. postlactation). In canopy gaps, vertical stratification in bat activity was less pronounced than in the forest interior. Vertical activity patterns differed among species. The upper canopy levels were important foraging habitats for the open‐space forager guild and for some edge‐space foragers like the Barbastelle bat Barbastella barbastellus and the soprano pipistrelle Pipistrellus pygmaeus. Myotis species had highest activity levels near the ground in forest gaps. Moreover, we found species‐dependent seasonal microhabitat shifts. Generally, all species and species groups considered except Myotis species showed higher activity levels during postlactation. Myotis species tended toward higher activity in the forest interior during postlactation. Ppygmaeus switched from high activity levels in the upper canopy during pregnancy and lactation to high activity levels near the ground during postlactation. We conclude that a full comprehension of forest bat habitat use is only possible when height in canopy and seasonal patterns are considered.  相似文献   

8.
Bats are increasingly recognized as reservoir species for a variety of zoonotic viruses that pose severe threats to human health. While many RNA viruses have been identified in bats, little is known about bat retroviruses. Endogenous retroviruses (ERVs) represent genomic fossils of past retroviral infections and, thus, can inform us on the diversity and history of retroviruses that have infected a species lineage. Here, we took advantage of the availability of a high-quality genome assembly for the little brown bat, Myotis lucifugus, to systematically identify and analyze ERVs in this species. We mined an initial set of 362 potentially complete proviruses from the three main classes of ERVs, which were further resolved into 13 major families and 86 subfamilies by phylogenetic analysis. Consensus or representative sequences for each of the 86 subfamilies were then merged to the Repbase collection of known ERV/long terminal repeat (LTR) elements to annotate the retroviral complement of the bat genome. The results show that nearly 5% of the genome assembly is occupied by ERV-derived sequences, a quantity comparable to findings for other eutherian mammals. About one-fourth of these sequences belong to subfamilies newly identified in this study. Using two independent methods, intraelement LTR divergence and analysis of orthologous loci in two other bat species, we found that the vast majority of the potentially complete proviruses identified in M. lucifugus were integrated in the last ∼25 million years. All three major ERV classes include recently integrated proviruses, suggesting that a wide diversity of retroviruses is still circulating in Myotis bats.  相似文献   

9.
Little information exists on resource selection by foraging Indiana bats (Myotis sodalis) during the maternity season. Existing studies are based on modest sample sizes because of the rarity of this endangered species and the difficulty of radio-tracking bats. Our objectives were to determine resource selection by foraging Indiana bats during the maternity season and to compare resource use between pregnant and lactating individuals. We used an information theoretic approach with discrete choice modeling based on telemetry data to evaluate our hypotheses that land cover, percent canopy cover, distance to water, and prescribed fire affected the relative probability a point was used by a foraging Indiana bat. We fit models for individual bats and a population-level model based on all individuals with a random factor to account for differences in sample size among individuals. We radio-tracked 29 individuals and found variation in resource selection among individuals. However, among individuals with the same supported covariates, the magnitude and direction of the covariates were similar. Eighteen bats selected areas with greater canopy closure and 5 of 6 bats that had areas burned by low-intensity prescribed fire in their home range selected burned areas. Resource selection was related to land cover for 13 individuals; they selected forest and shrubland over agricultural land, which composed >50% of the landscape within 10 km. We found no support for our hypothesis that resource selection was related to individual reproductive condition or Julian date in our population-level model indicating habitat selection was not determined by reproductive status or date within the maternity season. Land use or forest management that greatly reduces canopy cover may have a negative impact on Indiana bat use. Maintaining forest cover in agricultural landscapes is likely critical to persistence of maternity colonies in these landscapes. Sites managed with low severity prescribed fire may be selected by some individuals because of reduced understory vegetation. © 2013 The Wildlife Society.  相似文献   

10.
Razgour O  Korine C  Saltz D 《Oecologia》2011,167(2):493-502
Bodies of water are a key foraging habitat for insectivorous bats. Since water is a scarce and limiting resource in arid environments, bodies of open water may have a structuring effect on desert bat communities, resulting in temporal or spatial partitioning of bat activity. Using acoustic monitoring, we studied the spatial and temporal activity patterns of insectivorous bats over desert ponds, and hypothesised that sympatric bat species partition the foraging space above ponds based on interspecific competitive interactions. We used indirect measures of competition (niche overlap and competition coefficients from the regression method) and tested for differences in pond habitat selection and peak activity time over ponds. We examined the effect of changes in the activity of bat species on their potential competitors. We found that interspecific competition affects bat community structure and activity patterns. Competing species partitioned their use of ponds spatially, whereby each species was associated with different pond size and hydroperiod (the number of months a pond holds water) categories, as well as temporally, whereby their activity peaked at different hours of the night. The drying out of temporary ponds increased temporal partitioning over permanent ponds. Differences in the activity of species over ponds in response to the presence or absence of their competitors lend further support to the role of interspecific competition in structuring desert bat communities. We suggest that habitat use and night activity pattern of insectivorous bats in arid environments reflect the trade-offs between selection of preferred pond type or activity time and constraints posed by competitive interactions.  相似文献   

11.
Many local scale studies have shown that bats respond to water quality degradation or urbanization in a species‐specific manner. However, few have separated the effects of urbanization versus water quality degradation on bats, in single city or single watershed case studies. Across North Carolina, USA, we used the standardized North American Bat Monitoring Program mobile transect protocol to survey bat activity in 2015 and 2016 at 41 sites. We collected statewide water quality and urban land cover data to disentangle the effects of urbanization and water quality degradation on bats at the landscape scale. We found that statewide, water quality degradation and urbanization were not correlated. We found that bats responded to water quality degradation and urbanization independently at the landscape scale. Eptesicus fuscus and Lasiurus cinereus negatively responded to water quality degradation. Lasiurus borealis and Perimyotis subflavus positively responded to water quality degradation. Lasionycteris noctivagans did not respond to water quality degradation but was more active in more urbanized areas. Tadarida brasiliensis positively responded to urbanization and was less active in areas with degraded water quality. We show that bat–water quality relationships found at the local scale are evident at a landscape scale. We confirm that bats are useful bioindicators for both urbanization and water quality degradation. We suggest that water quality can be used to predict the presence of bat species of conservation concern, such as P. subflavus, in areas where it has not been studied locally.  相似文献   

12.
Bats are known to use aquatic habitats as foraging habitats. Agricultural intensification is perceived to be a main reason for the loss of wetlands. However, artificial wetland creation (i.e. the construction of retention-ponds) in the agricultural landscape aiming at water or nutrient retention has recently gained importance. We evaluated to what extent bats use these artificial wetlands as foraging habitats in an agricultural landscape.Bat activity and prey density were compared in matched pairs at retention-ponds and neighbouring vineyard sites using stationary bat-detectors and sticky-traps, respectively. To examine if bat activity is related to the number of bat individuals, a thermal infrared imaging camera was used. Pipistrellus pipistrellus, the dominant species, served as an example to assess habitat selection between retention-ponds and vineyards. This was performed by relating foraging activity to the available area available within the potential home-range.Total bat activity and nocturnal prey density were significantly higher above the retention-ponds than above vineyards. High differences of activity levels between the ponds and the respective vineyard sites were found for Pipistrellus spp. (P. pipistrellus and P. nathusii) and Myotis spp. (M. daubentonii and M. mystacinus), being about 180 times and 50 times higher above the retention-ponds, respectively. A significant correlation was found between recorded bat activity and the maximum number of bat individuals observed with a thermal infrared imaging camera. When relating foraging activity to habitat availability within the assumed home-range of P. pipistrellus, retention-ponds had on average a higher importance as a foraging habitat than the complete vineyard area although they covered less than 0.1% of its area.This study indicates that artificial wetlands such as retention-ponds provide foraging habitats for bats. Therefore, creation of wetlands in intensively used agricultural landscapes benefits bats.  相似文献   

13.
In urban environments, woodland areas are typically fragmented and subject to invasive species encroachment, woody overgrowth, and natural succession. In response to negative impacts, conservationists and land managers have implemented restoration strategies to enhance the integrity of woodlands. Because woodland habitat is important for bats (Order Chiroptera), alterations to forest structures may affect how bats utilize forest fragments in urban environments. We evaluated relationships among restoration efforts, microhabitat characteristics and overall bat activity, and interspecific variation among bats in response to woodland characteristics. We monitored bats in nine woodland forest preserves representing various stages of restoration within the Chicago metropolitan area in 2004 and 2005. Overall bat activity was positively related to prescribed burning, invasive species removal, and small tree density (7.7‐20 cm dbh) and inversely related to shrub density and clutter at 0‐6 m heights. There was interspecific variation in response to alterations in woodland structure, with Lasiurus borealis (L. borealis) positively associated with small and medium (20.1‐33 cm) tree densities and inversely related to clutter at 0‐9 m; Myotis spp. positively associated with canopy cover, clutter at 6‐9 m, and small and medium tree densities; and Lasionycteris noctivagans (L. noctivagans) positively associated with more open forests. Eptesicus fuscus (E. fuscus) activity was not strongly associated with any measured vegetation variable. Our results demonstrate bats positively respond to some forms of woodland restoration in urban landscapes. However, species‐specific responses to vegetation differed and should be taken into consideration when developing management plans.  相似文献   

14.
Food restriction affects the activation of the immune system although the metabolic cost associated with mounting such a response has rarely been examined except in model animals. Wild animals are constantly exposed to variations in the availability of food resources and they need to balance their energy budget to fight against pathogens. We examined the effect of food restriction in the fish eating Myotis (Myotis vivesi), a species of bat that experiences periods in which foraging is limited due to ambient conditions. We tested the hypothesis that acute food restriction (∼65% restriction for 1 night) would reduce the caloric response to lipopolysaccharidae (LPS) injection compared to bats fed ad libitum. We also measured a proxy for body temperature (Tskin) and expected reduced fever development when food intake was limited. Bats on the restricted diet had similar resting metabolic rate, total caloric cost and Tskin after the LPS challenge than when fed ad libitum. However, there was a delay in the metabolic and pyrogenic responses when bats were on the restricted diet. The effect of acute food restriction in delaying the hyperthermia development in fish eating Myotis might be of importance for its capacity to fight pathogens. Similar to other bats, the fish eating Myotis can fast for several consecutive days by entering torpor and future work is warranted to understand the effect of long periods of food restriction on bat immune response.  相似文献   

15.
16.
Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.  相似文献   

17.
White-nose syndrome (WNS) caused by the pathogenic fungus Pseudogymnoascus destructans is decimating the populations of several hibernating North American bat species. Little is known about the molecular interplay between pathogen and host in this disease. Fluorescence microscopy ambient ionization mass spectrometry was used to generate metabolic profiles from the wings of both healthy and diseased bats of the genus Myotis. Fungal siderophores, molecules that scavenge iron from the environment, were detected on the wings of bats with WNS, but not on healthy bats. This work is among the first examples in which microbial molecules are directly detected from an infected host and highlights the ability of atmospheric ionization methodologies to provide direct molecular insight into infection.  相似文献   

18.
It is commonly assumed that aerial insectivorous bats in the tropics respond to moonlight intensity by decreasing their foraging activity during bright nights due either to an increase in predation risk, or to a reduction in insect availability.The effect of moonlight on bat activity can be measured both between nights and within a single night. However, few studies have simultaneously used both approaches, and most authors generally compare bat activity with lunar phases. Our main aim was to evaluate how moonlight influences aerial insectivorous bat activity at different time scales: between nights and within the same night. Activity of five bat species was measured using autonomous ultrasound recording stations and moonlight intensity percentages retrieved from the Moontool program nightly throughout a 53-day sampling period. Only one species (Myotis riparius) responded negatively to moonlight, while two species (Pteronotus parnellii and Saccopteryx leptura) increased their foraging activity in moonlight. For Cormura brevirostris and S. bilineata, moonlight intensity did not affect activity level. Bat activity was greater for all species at the beginning of the night, independent of the presence of the moon, indicating that foraging just after the sunset is adaptive. Thus, bat response to the effect of moonlight intensity is more apparent between nights than within a single night and may depend on species-specific traits, such as flight speed, flexibility in habitat use and body size.  相似文献   

19.
Phenotypic evolutionary rates were measured for 27 craniometric characters in 12 extant OTUs from the bat genus Myotis (Chiroptera, Vespertilionidae). Squared Mahalanobis distance was used as a multivariate measure for amount of divergence, and squared Mahalanobis distance weighted by time was used as a measure for the rate of divergence. Estimates for the rates of divergence were found to be consistent with random walk hypothesis. Thus, the divergence in Myotis could be guided by random drift and mutations. The high dispersion in rate estimates suggests also a possible input of randomly fluctuating selection. The highest rates were recorded for divergence between M. myotisM. blythii species group and the other OTUs. Rates of divergence between the subspecies of M. blythii occur to be lesser than rates of divergence between the earlier diverged species, their divergence could probably be slowed down by stabilizing selection. Size-adjusted data appeared to be lesser then the initial data, and it can be concluded that both size and shape were involved in divergence of Myotis species. The skeletal characters in bats are known to be extremely conservative during long-term evolution, however, the possibility for random walk at short time interval implies that bat evolution is constrained rather ecologically and biomechanically than genetically or developmentally.  相似文献   

20.
  1. Interspecific competition (IC) is often seen as a main driver of evolutionary patterns and community structure. Bats might compete for key resources, and cases of exaggerated divergence of resource-related characters or trait overdispersion in bat assemblages are often explained in terms of current or past interspecific competition. However, other pressures leading to patterns that mimic the outcome of competition cannot always be ruled out.
  2. We present the state of knowledge on IC among bats, providing a critical evaluation of the information available and identifying open questions and challenges.
  3. We reviewed 100 documents addressing potential or actual IC in bats and categorised them in terms of the resource for which bats compete (food, foraging habitat, roosts, water, and acoustic space). We also examined the ecomorphological and behavioural traits considered therein to highlight responses to IC or niche partitioning.
  4. We found that: although resources should be limiting in order for competition to occur, this is seldom tested; sympatry is sometimes taken as synonymous of syntopy (yet sympatric species that are not syntopic will never experience competition); comparisons between sympatry and allopatry are rare; and testing of objective criteria exploring the existence of niche partitioning or character displacement is not commonly adopted.
  5. While morphological examination of food remains in droppings has often led to coarse-grained analysis that proved insufficient to establish the occurrence of food niche overlap or partitioning, new frontiers are being opened by state-of-the-art molecular dietary analysis.
  6. A better understanding of IC in bats is paramount, since distributional changes leading to novel bat assemblages driven by climate change are already taking place, and the dramatic decline in insect availability, as well as the global loss or alteration of foraging habitat, may generate new competitive interactions or exacerbate existing interactions in the Anthropocene, and into the future.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号