首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Singh S  Choi SB  Modi MK  Okita TW 《Phytochemistry》2002,59(3):261-268
Four cDNA clones encoding two large subunits and two small subunits of the starch regulatory enzyme ADP-glucose pyrophosphorylase (AGPase) were isolated from a chickpea (Cicer arietinum L.) stem cDNA library. DNA sequence and Southern blot analyses of these clones, designated CagpL1, CagpL2 (large subunits) and CagpS1 and CagpS2 (small subunits), revealed that these isoforms represented different AGPase large and small subunits. RNA expression analysis indicated that CagpL1 was expressed strongly in leaves with reduced expression in the stem. No detectable expression was observed in seeds and roots. CagpL2 was expressed moderately in seeds followed by weak expression in leaves, stems and roots. Similar analysis showed that CagpS1 and CagpS2 displayed a spatial expression pattern similar to that observed for CagpL2 with the exception that CagpS1 showed a much higher expression in seeds than CagpS2. The spatial expression patterns of these different AGPase subunit sequences indicate that different AGPase isoforms are used to control starch biosynthesis in different organs during chickpea development.  相似文献   

2.
3.
4.
Transgenic potato plants were created in which the expression of ADP-glucose pyrophosphorylase (AGPase) was inhibited by introducing a chimeric gene containing the coding region of one of the subunits of the AGPase linked in an antisense orientation to the CaMV 35S promoter. Partial inhibition of the AGPase enzyme was achieved in leaves and almost complete inhibition in tubers. This resulted in the abolition of starch formation in tubers, thus proving that AGPase has a unique role in starch biosynthesis in plants. Instead up to 30% of the dry weight of the transgenic potato tubers was represented by sucrose and up to 8% by glucose. The process of tuber formation also changed, resulting in significantly more tubers both per plant and per stolon. The accumulation of soluble sugars in tubers of antisense plants resulted in a significant increase of the total tuber fresh weight, but a decrease in dry weight of tubers. There was no significant change in the RNA levels of several other starch biosynthetic enzymes, but there was a great increase in the RNA level of the major sucrose synthesizing enzyme sucrose phosphate synthase. In addition, the inhibition of starch biosynthesis was accompanied by a massive reduction in the expression of the major storage protein species of potato tubers, supporting the idea that the expression of storage protein genes is in some way connected to carbohydrate formation in sink storage tissues.  相似文献   

5.
Several cDNA clones encoding two different ADP-glucose pyrophosphorylase (AGPase, EC 2.7.7.27) polypeptides denoted VfAGPC and VfAGPP were isolated from a cotyledonary library of Vicia faba L. Both sequences are closely related to AGPase small-subunit sequences from other plants. Whereas mRNA levels of VfAGPP were equally high in developing cotyledons and leaves, the mRNA of VfAGPC was present in considerable amounts only in cotyledons. During development of cotyledons, both mRNAs accumulated until the beginning of the desiccation phase and disappeared afterwards. The increase of AGPase activity in cotyledons during the phase of storage-product synthesis was closely followed by the accumulation of starch. The AGPase activity in crude extracts of cotyledons was insensitive to 3-phosphoglycerate whereas the activity from leaves could be activated more than five-fold. Inorganic phosphate inhibited the enzyme from both tissues but was slightly more effective on the leaf enzyme. There was a correlation at the cellular level between the distribution of VfAGPP and VfAGPC mRNAs and the accumulation of starch, as studied by in-situ hybridisation and by histochemical staining in parallel tissue sections of developing seeds, respectively. During the early phase of seed development (12–15 days after fertilization) VfAGPase mRNA and accumulation of starch were detected transiently in the hypodermal, chlorenchymal and outer parenchymal cell layers of the seed coat but not in the embryo. At 25 days after fertilization both synthesis of VfAGPase mRNA and biosynthesis of starch had started in parenchyma cells of the inner adaxial zone of the cotyledons. During later stages, the expression of VfAGPase and synthesis of starch extended over most of the cotyledons but were absent from peripheral cells of the abaxial zone, provascular and procalyptral cells.Abbreviations AGPase ADP-glucose pyrophosphorylase - DAF days after fertilization - Glc1P glucose-1-phosphate - 3-PGA 3-phosphoglycerate - VfAGPC AGPase subunit of Vicia faba mainly expressed in cotyledons - VfAGPP AGPase subunit of Vicia faba mainly expressed in leaves and cotyledons - pVfAGPC, pVfAGPP plasmids containing VfAGPC and VfAGPP, respectively This work was supported by the Bundesministerium für Forschung und Technologie BCT 0389, Molekular- und Zellbiologie von höheren Pflanzen und Pilzen. U.W acknowledges additional support by the Fonds der chemischen Industrie. We thank Elsa Fessel for excellent technical assistance.  相似文献   

6.
Many plants, including Arabidopsis thaliana, retain a substantial portion of their photosynthate in leaves in the form of starch, which is remobilized to support metabolism and growth at night. ADP-glucose pyrophosphorylase (AGPase) catalyses the first committed step in the pathway of starch synthesis, the production of ADP-glucose. The enzyme is redox-activated in the light and in response to sucrose accumulation, via reversible breakage of an intermolecular cysteine bridge between the two small (APS1) subunits. The biological function of this regulatory mechanism was investigated by complementing an aps1 null mutant (adg1) with a series of constructs containing a full-length APS1 gene encoding either the wild-type APS1 protein or mutated forms in which one of the five cysteine residues was replaced by serine. Substitution of Cys81 by serine prevented APS1 dimerization, whereas mutation of the other cysteines had no effect. Thus, Cys81 is both necessary and sufficient for dimerization of APS1. Compared to control plants, the adg1/APS1(C81S) lines had higher levels of ADP-glucose and maltose, and either increased rates of starch synthesis or a starch-excess phenotype, depending on the daylength. APS1 protein levels were five- to tenfold lower in adg1/APS1(C81S) lines than in control plants. These results show that redox modulation of AGPase contributes to the diurnal regulation of starch turnover, with inappropriate regulation of the enzyme having an unexpected impact on starch breakdown, and that Cys81 may play an important role in the regulation of AGPase turnover.  相似文献   

7.
Amylose and amylopectin are determinants of the physicochemical properties for starch and grain quality in rice. Their biosynthesis is catalyzed by the interplay of ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase (SSS), a starch branching enzyme (SBE), and a starch debranching enzyme (SDE). In this study, the genes for these enzymes were highly expressed 7 to 28 days after flowering during grain development, and their expression closely matched increases in both starch content and grain weight Among all the tested cultivars, amylose contents in the rice grains remained essentially constant throughout their development The AGPase gene was highly expressed in the high-yield cultivars of both glutinous and non-glutinous rice. The SSS gene was actively expressed when mature GBSS mRNA decreased. Genes responsible for amylopectin biosynthesis were simultaneously expressed in the late stage of grain development. We have now demonstrated that the expression patterns of starch biosynthetic genes differ between glutinous and non-glutinous rice, and between Tongil (a Japonica/ Indica hybrid) and Japonica types.  相似文献   

8.
9.
Maize domestication from teosinte (Zea mays ssp. parviglumis) was accompanied by an increase of kernel size in landraces. Subsequent breeding has led to a diversification of kernel size and starch content among major groups of inbred lines. We aim at investigating the effect of domestication on duplicated genes encoding a key enzyme of the starch pathway, the ADP-glucose pyrophosphorylase (AGPase). Three pairs of paralogs encode the AGPase small (SSU) and large (LSU) subunits mainly expressed in the endosperm, the embryo and the leaf. We first validated the putative sequence of LSUleaf through a comparative expression assay of the six genes. Second, we investigated the patterns of molecular evolution on a 2 kb coding region homologous among the six genes in three panels: teosintes, landraces, and inbred lines. We corrected for demographic effects by relying on empirical distributions built from 580 previously sequenced ESTs. We found contrasted patterns of selection among duplicates: three genes exhibit patterns of directional selection during domestication (SSUend, LSUemb) or breeding (LSUleaf), two exhibit patterns consistent with diversifying (SSUleaf) and balancing selection (SSUemb) accompanying maize breeding. While patterns of linkage disequilibrium did not reveal sign of coevolution between genes expressed in the same organ, we detected an excess of non-synonymous substitutions in the small subunit functional domains highlighting their role in AGPase evolution. Our results offer a different picture on AGPase evolution than the one depicted at the Angiosperm level and reveal how genetic redundancy can provide flexibility in the response to selection.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号